Spaces:
Runtime error
Runtime error
File size: 11,063 Bytes
63a5c24 9513cae 5fb8127 a3e95e6 d9f8b28 9513cae d9f8b28 43b8dd7 d9f8b28 9513cae d9f8b28 9513cae d9f8b28 f027a65 d9f8b28 f027a65 a3e95e6 d9f8b28 5fb8127 d9f8b28 63a5c24 d9f8b28 f027a65 5fb8127 d9f8b28 f027a65 a3e95e6 63a5c24 5fb8127 af66144 a3e95e6 af66144 a3e95e6 af66144 9513cae 8b0e392 5fb8127 5b981d0 a3e95e6 63a5c24 5fb8127 63a5c24 66ad139 63a5c24 d9f8b28 5fb8127 d9f8b28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import json
import gradio as gr
import uvicorn
from datetime import datetime
from typing import List, Tuple
from starlette.config import Config
from starlette.middleware.sessions import SessionMiddleware
from starlette.responses import RedirectResponse
from authlib.integrations.starlette_client import OAuth, OAuthError
from fastapi import FastAPI, Request
from shared import Client
app = FastAPI()
config = {}
clients = {}
llm_host_names = []
oauth = None
def init_oauth():
global oauth
google_client_id = os.environ.get("GOOGLE_CLIENT_ID")
google_client_secret = os.environ.get("GOOGLE_CLIENT_SECRET")
secret_key = os.environ.get('SECRET_KEY') or "a_very_secret_key"
starlette_config = Config(environ={"GOOGLE_CLIENT_ID": google_client_id,
"GOOGLE_CLIENT_SECRET": google_client_secret})
oauth = OAuth(starlette_config)
oauth.register(
name='google',
server_metadata_url='https://accounts.google.com/.well-known/openid-configuration',
client_kwargs={'scope': 'openid email profile'}
)
app.add_middleware(SessionMiddleware, secret_key=secret_key)
def init_config():
"""
Initialize configuration. A configured `api_url` or `api_key` may be an
envvar reference OR a literal value. Configuration should follow the
format:
{"<llm_host_name>": {"api_key": "<api_key>",
"api_url": "<api_url>"
}
}
"""
global config
global clients
global llm_host_names
config = json.loads(os.environ['CONFIG'])
for name in config:
model_personas = config[name].get("personas", {})
client = Client(
api_url=os.environ.get(config[name]['api_url'],
config[name]['api_url']),
api_key=os.environ.get(config[name]['api_key'],
config[name]['api_key']),
personas=model_personas
)
clients[name] = client
llm_host_names = list(config.keys())
def get_allowed_models(user_domain: str) -> List[str]:
"""
Get a list of allowed endpoints for a specified user domain
:param user_domain: User domain (i.e. neon.ai, google.com, guest)
:return: List of allowed endpoints from configuration
"""
allowed_endpoints = []
for client in clients:
if clients[client].config.inference.allowed_domains is None:
# Allowed domains not specified; model is public
allowed_endpoints.append(client)
elif user_domain in clients[client].config.inference.allowed_domains:
# User domain is in the allowed domain list
allowed_endpoints.append(client)
return allowed_endpoints
def parse_radio_select(radio_select: tuple) -> (str, str):
"""
Parse radio selection to determine the requested model and persona
:param radio_select: List of radio selection states
:return: Selected model, persona
"""
value_index = next(i for i in range(len(radio_select)) if radio_select[i] is not None)
model = llm_host_names[value_index]
persona = radio_select[value_index]
return model, persona
def get_login_button(request: gr.Request) -> gr.Button:
"""
Get a login/logout button based on current login status
:param request: Gradio request to evaluate
:return: Button for either login or logout action
"""
user = get_user(request)
print(f"Getting login button for {user}")
if user == "guest":
return gr.Button("Login", link="/login")
else:
return gr.Button(f"Logout {user}", link="/logout")
def get_user(request: Request) -> str:
"""
Get a unique user email address for the specified request
:param request: FastAPI Request object with user session data
:return: String user email address or "guest"
"""
if not request:
return "guest"
user = request.session.get('user', {}).get('email') or "guest"
return user
@app.route('/logout')
async def logout(request: Request):
"""
Remove the user session context and reload an un-authenticated session
:param request: FastAPI Request object with user session data
:return: Redirect to `/`
"""
request.session.pop('user', None)
return RedirectResponse(url='/')
@app.route('/login')
async def login(request: Request):
"""
Start oauth flow for login with Google
:param request: FastAPI Request object
"""
redirect_uri = request.url_for('auth')
# Ensure that the `redirect_uri` is https
from urllib.parse import urlparse, urlunparse
redirect_uri = urlunparse(urlparse(str(redirect_uri))._replace(scheme='https'))
return await oauth.google.authorize_redirect(request, redirect_uri)
@app.route('/auth')
async def auth(request: Request):
"""
Callback endpoint for Google oauth
:param request: FastAPI Request object
"""
try:
access_token = await oauth.google.authorize_access_token(request)
except OAuthError:
return RedirectResponse(url='/')
request.session['user'] = dict(access_token)["userinfo"]
return RedirectResponse(url='/')
def respond(
message: str,
history: List[Tuple[str, str]],
conversational: bool,
max_tokens: int,
*radio_select,
):
"""
Send user input to a vLLM backend and return the generated response
:param message: String input from the user
:param history: Optional list of chat history (<user message>,<llm message>)
:param conversational: If true, include chat history
:param max_tokens: Maximum tokens for the LLM to generate
:param radio_select: List of radio selection args to parse
:return: String LLM response
"""
model, persona = parse_radio_select(radio_select)
client = clients[model]
messages = []
try:
system_prompt = client.personas[persona]
except KeyError:
supported_personas = list(client.personas.keys())
raise gr.Error(f"Model '{model}' does not support persona '{persona}', only {supported_personas}")
if system_prompt is not None:
messages.append({"role": "system", "content": system_prompt})
if conversational:
for val in history[-2:]:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
completion = client.openai.chat.completions.create(
model=client.vllm_model_name,
messages=messages,
max_tokens=max_tokens,
temperature=0,
extra_body={
"add_special_tokens": True,
"repetition_penalty": 1.05,
"use_beam_search": True,
"best_of": 5,
},
)
response = completion.choices[0].message.content
return response
def get_model_options(request: gr.Request) -> List[gr.Radio]:
"""
Get allowed models for the specified session.
:param request: Gradio request object to get user from
:return: List of Radio objects for available models
"""
if request:
# `user` is a valid Google email address or 'guest'
user = get_user(request.request)
else:
user = "guest"
print(f"Getting models for {user}")
domain = "guest" if user == "guest" else user.split('@')[1]
allowed_llm_host_names = get_allowed_models(domain)
radio_infos = [f"{name} ({clients[name].vllm_model_name})"
for name in allowed_llm_host_names]
# Components
radios = [gr.Radio(choices=clients[name].personas.keys(),
value=None, label=info) for name, info
in zip(allowed_llm_host_names, radio_infos)]
# Select the first available option by default
radios[0].value = list(clients[allowed_llm_host_names[0]].personas.keys())[0]
print(f"Set default persona to {radios[0].value} for {allowed_llm_host_names[0]}")
# Ensure we always have the same number of rows
while len(radios) < len(llm_host_names):
radios.append(gr.Radio(choices=[], value=None, label="Not Authorized"))
return radios
def init_gradio() -> gr.Blocks:
"""
Initialize a Gradio demo
:return:
"""
conversational_checkbox = gr.Checkbox(value=True, label="conversational")
max_tokens_slider = gr.Slider(minimum=64, maximum=2048, value=512, step=64,
label="Max new tokens")
radios = get_model_options(None)
with gr.Blocks() as blocks:
# Events
radio_state = gr.State([radio.value for radio in radios])
@gr.on(triggers=[blocks.load, *[radio.input for radio in radios]],
inputs=[radio_state, *radios], outputs=[radio_state, *radios])
def radio_click(state, *new_state):
try:
changed_index = next(i for i in range(len(state))
if state[i] != new_state[i])
changed_value = new_state[changed_index]
except StopIteration:
# TODO: This is the result of some error in rendering a selected
# option.
# Changed to current selection
changed_value = [i for i in new_state if i is not None][0]
changed_index = new_state.index(changed_value)
clean_state = [None if i != changed_index else changed_value
for i in range(len(state))]
return clean_state, *clean_state
# Compile
# TODO: Define a configuration structure for this information
accordion_info = config.get("accordian_info") or \
"Persona and LLM Options - Choose one:"
version = config.get("version") or \
f"v{datetime.now().strftime('%Y-%m-%d')}"
title = config.get("title") or \
f"Neon AI BrainForge Personas and Large Language Models ({version})"
with gr.Accordion(label=accordion_info, open=True,
render=False) as accordion:
[radio.render() for radio in radios]
conversational_checkbox.render()
max_tokens_slider.render()
_ = gr.ChatInterface(
respond,
additional_inputs=[
conversational_checkbox,
max_tokens_slider,
*radios,
],
additional_inputs_accordion=accordion,
title=title,
concurrency_limit=5,
)
# Render login/logout button
login_button = gr.Button("Log In")
blocks.load(get_login_button, None, login_button)
accordion.render()
blocks.load(get_model_options, None, radios)
return blocks
if __name__ == "__main__":
init_config()
init_oauth()
blocks = init_gradio()
app = gr.mount_gradio_app(app, blocks, '/', auth_dependency=get_user)
uvicorn.run(app, host='0.0.0.0', port=7860)
|