File size: 40,442 Bytes
6369972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437ee94
 
6369972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437ee94
 
6369972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
"""
PROMPT> python -m src.plan.run_plan_pipeline
"""
from datetime import datetime
import logging
import json
import luigi
from pathlib import Path

from src.plan.filenames import FilenameEnum
from src.plan.speedvsdetail import SpeedVsDetailEnum
from src.plan.plan_file import PlanFile
from src.plan.find_plan_prompt import find_plan_prompt
from src.assume.make_assumptions import MakeAssumptions
from src.assume.assumption_orchestrator import AssumptionOrchestrator
from src.expert.pre_project_assessment import PreProjectAssessment
from src.plan.create_project_plan import CreateProjectPlan
from src.swot.swot_analysis import SWOTAnalysis
from src.expert.expert_finder import ExpertFinder
from src.expert.expert_criticism import ExpertCriticism
from src.expert.expert_orchestrator import ExpertOrchestrator
from src.plan.create_wbs_level1 import CreateWBSLevel1
from src.plan.create_wbs_level2 import CreateWBSLevel2
from src.plan.create_wbs_level3 import CreateWBSLevel3
from src.plan.create_pitch import CreatePitch
from src.plan.identify_wbs_task_dependencies import IdentifyWBSTaskDependencies
from src.plan.estimate_wbs_task_durations import EstimateWBSTaskDurations
from src.wbs.wbs_task import WBSTask, WBSProject
from src.wbs.wbs_populate import WBSPopulate
from src.llm_factory import get_llm
from src.format_json_for_use_in_query import format_json_for_use_in_query
from src.utils.get_env_as_string import get_env_as_string

logger = logging.getLogger(__name__)
DEFAULT_LLM_MODEL = "ollama-llama3.1"

class PlanTask(luigi.Task):
    # Default it to the current timestamp, eg. 19841231_235959
    run_id = luigi.Parameter(default=datetime.now().strftime("%Y%m%d_%H%M%S"))

    # By default, run everything but it's slow.
    # This can be overridden in developer mode, where a quick turnaround is needed, and the details are not important.
    speedvsdetail = luigi.EnumParameter(enum=SpeedVsDetailEnum, default=SpeedVsDetailEnum.ALL_DETAILS_BUT_SLOW)

    @property
    def run_dir(self) -> Path:
        return Path('run') / self.run_id

    def file_path(self, filename: FilenameEnum) -> Path:
        return self.run_dir / filename.value


class SetupTask(PlanTask):
    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.INITIAL_PLAN)))

    def run(self):
        # Ensure the run directory exists.
        self.run_dir.mkdir(parents=True, exist_ok=True)

        # Pick a random prompt.
        plan_prompt = find_plan_prompt("4dc34d55-0d0d-4e9d-92f4-23765f49dd29")
        plan_file = PlanFile.create(plan_prompt)
        plan_file.save(self.output().path)

class AssumptionsTask(PlanTask):
    """
    Make assumptions about the plan.
    Depends on:
      - SetupTask (for the initial plan)
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return SetupTask(run_id=self.run_id)

    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.DISTILL_ASSUMPTIONS_RAW)))

    def run(self):
        logger.info("Making assumptions about the plan...")

        # Read inputs from required tasks.
        with self.input().open("r") as f:
            plan_prompt = f.read()

        # I'm currently debugging the speedvsdetail parameter. When I'm done I can remove it.
        # Verifying that the speedvsdetail parameter is set correctly.
        logger.info(f"AssumptionsTask.speedvsdetail: {self.speedvsdetail}")
        if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS:
            logger.info("AssumptionsTask: We are in FAST_BUT_SKIP_DETAILS mode.")
        else:
            logger.info("AssumptionsTask: We are in another mode")

        llm = get_llm(self.llm_model)

        # Define callback functions.
        def phase1_post_callback(make_assumptions: MakeAssumptions) -> None:
            raw_path = self.run_dir / FilenameEnum.MAKE_ASSUMPTIONS_RAW.value
            cleaned_path = self.run_dir / FilenameEnum.MAKE_ASSUMPTIONS.value
            make_assumptions.save_raw(str(raw_path))
            make_assumptions.save_assumptions(str(cleaned_path))

        # Execute
        orchestrator = AssumptionOrchestrator()
        orchestrator.phase1_post_callback = phase1_post_callback
        orchestrator.execute(llm, plan_prompt)

        # Write the assumptions to the output file.
        file_path = self.run_dir / FilenameEnum.DISTILL_ASSUMPTIONS_RAW.value
        orchestrator.distill_assumptions.save_raw(str(file_path))


class PreProjectAssessmentTask(PlanTask):
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail)

    def output(self):
        return {
            'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT_RAW))),
            'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT)))
        }

    def run(self):
        logger.info("Conducting pre-project assessment...")

        # Read the plan prompt from the SetupTask's output.
        with self.input().open("r") as f:
            plan_prompt = f.read()

        # Build the query.
        query = f"Initial plan: {plan_prompt}\n\n"

        # Get an instance of your LLM.
        llm = get_llm(self.llm_model)

        # Execute the pre-project assessment.
        pre_project_assessment = PreProjectAssessment.execute(llm, query)

        # Save raw output.
        raw_path = self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT_RAW)
        pre_project_assessment.save_raw(str(raw_path))

        # Save cleaned pre-project assessment.
        clean_path = self.file_path(FilenameEnum.PRE_PROJECT_ASSESSMENT)
        pre_project_assessment.save_preproject_assessment(str(clean_path))


class ProjectPlanTask(PlanTask):
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        """
        This task depends on:
          - SetupTask: produces the plan prompt (001-plan.txt)
          - AssumptionsTask: produces the distilled assumptions (003-distill_assumptions.json)
          - PreProjectAssessmentTask: produces the pre‑project assessment files
        """
        return {
            'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail),
            'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }

    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.PROJECT_PLAN)))

    def run(self):
        logger.info("Creating plan...")

        # Read the plan prompt from SetupTask's output.
        setup_target = self.input()['setup']
        with setup_target.open("r") as f:
            plan_prompt = f.read()

        # Read assumptions from the distilled assumptions output.
        assumptions_file = self.input()['assumptions']
        with assumptions_file.open("r") as f:
            assumption_list = json.load(f)

        # Read the pre-project assessment from its file.
        pre_project_assessment_file = self.input()['preproject']['clean']
        with pre_project_assessment_file.open("r") as f:
            pre_project_assessment_dict = json.load(f)

        # Build the query.
        query = (
            f"Initial plan: {plan_prompt}\n\n"
            f"Assumptions:\n{format_json_for_use_in_query(assumption_list)}\n\n"
            f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}"
        )

        # Get an LLM instance.
        llm = get_llm(self.llm_model)

        # Execute the plan creation.
        create_project_plan = CreateProjectPlan.execute(llm, query)
        output_path = self.output().path
        create_project_plan.save(output_path)

        logger.info("Project plan created and saved to %s", output_path)


class SWOTAnalysisTask(PlanTask):
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return {
            'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail),
            'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }

    def output(self):
        return {
            'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.SWOT_RAW))),
            'markdown': luigi.LocalTarget(str(self.file_path(FilenameEnum.SWOT_MARKDOWN)))
        }

    def run(self):
        logger.info("SWOTAnalysisTask. Loading files...")

        # 1. Read the plan prompt from SetupTask.
        with self.input()['setup'].open("r") as f:
            plan_prompt = f.read()

        # 2. Read the distilled assumptions from AssumptionsTask.
        with self.input()['assumptions'].open("r") as f:
            assumption_list = json.load(f)

        # 3. Read the pre-project assessment from PreProjectAssessmentTask.
        with self.input()['preproject']['clean'].open("r") as f:
            pre_project_assessment_dict = json.load(f)

        # 4. Read the project plan from ProjectPlanTask.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)

        logger.info("SWOTAnalysisTask. All files are now ready. Performing analysis...")

        # Build the query for SWOT analysis.
        query = (
            f"Initial plan: {plan_prompt}\n\n"
            f"Assumptions:\n{format_json_for_use_in_query(assumption_list)}\n\n"
            f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}\n\n"
            f"Project plan:\n{format_json_for_use_in_query(project_plan_dict)}"
        )

        # Create LLM instances for SWOT analysis.
        llm = get_llm(self.llm_model)

        # Execute the SWOT analysis.
        try:
            swot_analysis = SWOTAnalysis.execute(llm, query)
        except Exception as e:
            logger.error("SWOT analysis failed: %s", e)
            raise

        # Convert the SWOT analysis to a dict and markdown.
        swot_raw_dict = swot_analysis.to_dict()
        swot_markdown = swot_analysis.to_markdown(include_metadata=False)

        # Write the raw SWOT JSON.
        with self.output()['raw'].open("w") as f:
            json.dump(swot_raw_dict, f, indent=2)

        # Write the SWOT analysis as Markdown.
        markdown_path = self.output()['markdown'].path
        with open(markdown_path, "w", encoding="utf-8") as f:
            f.write(swot_markdown)

        logger.info("SWOT analysis complete.")

class ExpertReviewTask(PlanTask):
    """
    Finds experts to review the SWOT analysis and have them provide criticism.
    Depends on:
      - SetupTask (for the initial plan)
      - PreProjectAssessmentTask (for the pre‑project assessment)
      - ProjectPlanTask (for the project plan)
      - SWOTAnalysisTask (for the SWOT analysis)
    Produces:
      - Raw experts file (006-experts_raw.json)
      - Cleaned experts file (007-experts.json)
      - For each expert, a raw expert criticism file (008-XX-expert_criticism_raw.json) [side effects via callbacks]
      - Final expert criticism markdown (009-expert_criticism.md)
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return {
            'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail),
            'preproject': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'swot_analysis': SWOTAnalysisTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }

    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.EXPERT_CRITICISM_MARKDOWN)))

    def run(self):
        logger.info("Finding experts to review the SWOT analysis, and having them provide criticism...")

        # Read inputs from required tasks.
        with self.input()['setup'].open("r") as f:
            plan_prompt = f.read()
        with self.input()['preproject']['clean'].open("r") as f:
            pre_project_assessment_dict = json.load(f)
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        swot_markdown_path = self.input()['swot_analysis']['markdown'].path
        with open(swot_markdown_path, "r", encoding="utf-8") as f:
            swot_markdown = f.read()

        # Build the query.
        query = (
            f"Initial plan: {plan_prompt}\n\n"
            f"Pre-project assessment:\n{format_json_for_use_in_query(pre_project_assessment_dict)}\n\n"
            f"Project plan:\n{format_json_for_use_in_query(project_plan_dict)}\n\n"
            f"SWOT Analysis:\n{swot_markdown}"
        )

        llm = get_llm(self.llm_model)

        # Define callback functions.
        def phase1_post_callback(expert_finder: ExpertFinder) -> None:
            raw_path = self.run_dir / FilenameEnum.EXPERTS_RAW.value
            cleaned_path = self.run_dir / FilenameEnum.EXPERTS_CLEAN.value
            expert_finder.save_raw(str(raw_path))
            expert_finder.save_cleanedup(str(cleaned_path))

        def phase2_post_callback(expert_criticism: ExpertCriticism, expert_index: int) -> None:
            file_path = self.run_dir / FilenameEnum.EXPERT_CRITICISM_RAW_TEMPLATE.format(expert_index + 1)
            expert_criticism.save_raw(str(file_path))

        # Execute the expert orchestration.
        expert_orchestrator = ExpertOrchestrator()
        # IDEA: max_expert_count. don't truncate to 2 experts. Interview them all in production mode.
        expert_orchestrator.phase1_post_callback = phase1_post_callback
        expert_orchestrator.phase2_post_callback = phase2_post_callback
        expert_orchestrator.execute(llm, query)

        # Write final expert criticism markdown.
        expert_criticism_markdown_file = self.file_path(FilenameEnum.EXPERT_CRITICISM_MARKDOWN)
        with expert_criticism_markdown_file.open("w") as f:
            f.write(expert_orchestrator.to_markdown())

class CreateWBSLevel1Task(PlanTask):
    """
    Creates the Work Breakdown Structure (WBS) Level 1.
    Depends on:
      - ProjectPlanTask: provides the project plan as JSON.
    Produces:
      - Raw WBS Level 1 output file (xxx-wbs_level1_raw.json)
      - Cleaned up WBS Level 1 file (xxx-wbs_level1.json)
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }

    def output(self):
        return {
            'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL1_RAW))),
            'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL1)))
        }

    def run(self):
        logger.info("Creating Work Breakdown Structure (WBS) Level 1...")
        
        # Read the project plan JSON from the dependency.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        
        # Build the query using the project plan.
        query = format_json_for_use_in_query(project_plan_dict)
        
        # Get an LLM instance.
        llm = get_llm(self.llm_model)
        
        # Execute the WBS Level 1 creation.
        create_wbs_level1 = CreateWBSLevel1.execute(llm, query)
        
        # Save the raw output.
        wbs_level1_raw_dict = create_wbs_level1.raw_response_dict()
        with self.output()['raw'].open("w") as f:
            json.dump(wbs_level1_raw_dict, f, indent=2)
        
        # Save the cleaned up result.
        wbs_level1_result_json = create_wbs_level1.cleanedup_dict()
        with self.output()['clean'].open("w") as f:
            json.dump(wbs_level1_result_json, f, indent=2)
        
        logger.info("WBS Level 1 created successfully.")

class CreateWBSLevel2Task(PlanTask):
    """
    Creates the Work Breakdown Structure (WBS) Level 2.
    Depends on:
      - ProjectPlanTask: provides the project plan as JSON.
      - CreateWBSLevel1Task: provides the cleaned WBS Level 1 result.
    Produces:
      - Raw WBS Level 2 output (007-wbs_level2_raw.json)
      - Cleaned WBS Level 2 output (008-wbs_level2.json)
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }

    def output(self):
        return {
            'raw': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL2_RAW))),
            'clean': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL2)))
        }

    def run(self):
        logger.info("Creating Work Breakdown Structure (WBS) Level 2...")
        
        # Read the project plan from the ProjectPlanTask output.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        
        # Read the cleaned WBS Level 1 result from the CreateWBSLevel1Task output.
        # Here we assume the cleaned output is under the 'clean' key.
        with self.input()['wbs_level1']['clean'].open("r") as f:
            wbs_level1_result_json = json.load(f)
        
        # Build the query using CreateWBSLevel2's format_query method.
        query = CreateWBSLevel2.format_query(project_plan_dict, wbs_level1_result_json)
        
        # Get an LLM instance.
        llm = get_llm(self.llm_model)
        
        # Execute the WBS Level 2 creation.
        create_wbs_level2 = CreateWBSLevel2.execute(llm, query)
        
        # Retrieve and write the raw output.
        wbs_level2_raw_dict = create_wbs_level2.raw_response_dict()
        with self.output()['raw'].open("w") as f:
            json.dump(wbs_level2_raw_dict, f, indent=2)
        
        # Retrieve and write the cleaned output (e.g. major phases with subtasks).
        with self.output()['clean'].open("w") as f:
            json.dump(create_wbs_level2.major_phases_with_subtasks, f, indent=2)
        
        logger.info("WBS Level 2 created successfully.")

class WBSProjectLevel1AndLevel2Task(PlanTask):
    """
    Create a WBS project from the WBS Level 1 and Level 2 JSON files.
    
    It depends on:
      - CreateWBSLevel1Task: providing the cleaned WBS Level 1 JSON.
      - CreateWBSLevel2Task: providing the major phases with subtasks and the task UUIDs.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2)))
    
    def requires(self):
        return {
            'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
        }
    
    def run(self):
        wbs_level1_path = self.input()['wbs_level1']['clean'].path
        wbs_level2_path = self.input()['wbs_level2']['clean'].path
        wbs_project = WBSPopulate.project_from_level1_json(wbs_level1_path)
        WBSPopulate.extend_project_with_level2_json(wbs_project, wbs_level2_path)

        json_representation = json.dumps(wbs_project.to_dict(), indent=2)
        with self.output().open("w") as f:
            f.write(json_representation)

class CreatePitchTask(PlanTask):
    """
    Create a the pitch that explains the project plan, from multiple perspectives.
    
    This task depends on:
      - ProjectPlanTask: provides the project plan JSON.
      - WBSProjectLevel1AndLevel2Task: containing the top level of the project plan.
    
    The resulting pitch JSON is written to the file specified by FilenameEnum.PITCH.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)
    
    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.PITCH)))
    
    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
        }
    
    def run(self):
        logger.info("Creating pitch...")
        
        # Read the project plan JSON.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        
        wbs_project_path = self.input()['wbs_project'].path
        with open(wbs_project_path, "r") as f:
            wbs_project_dict = json.load(f)
        wbs_project = WBSProject.from_dict(wbs_project_dict)
        wbs_project_json = wbs_project.to_dict()
        
        # Build the query
        query = (
            f"The project plan:\n{format_json_for_use_in_query(project_plan_dict)}\n\n"
            f"Work Breakdown Structure:\n{format_json_for_use_in_query(wbs_project_json)}"
        )
        
        # Get the LLM instance.
        llm = get_llm(self.llm_model)
        
        # Execute the pitch creation.
        create_pitch = CreatePitch.execute(llm, query)
        pitch_dict = create_pitch.raw_response_dict()
        
        # Write the resulting pitch JSON to the output file.
        with self.output().open("w") as f:
            json.dump(pitch_dict, f, indent=2)
        
        logger.info("Pitch created and written to %s", self.output().path)

class IdentifyTaskDependenciesTask(PlanTask):
    """
    This task identifies the dependencies between WBS tasks.
    
    It depends on:
      - ProjectPlanTask: provides the project plan JSON.
      - CreateWBSLevel2Task: provides the major phases with subtasks.
    
    The raw JSON response is written to the file specified by FilenameEnum.TASK_DEPENDENCIES_RAW.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)
    
    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.TASK_DEPENDENCIES_RAW)))
    
    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }
    
    def run(self):
        logger.info("Identifying task dependencies...")
        
        # Read the project plan JSON.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        
        # Read the major phases with subtasks from WBS Level 2 output.
        with self.input()['wbs_level2']['clean'].open("r") as f:
            major_phases_with_subtasks = json.load(f)
        
        # Build the query using the provided format method.
        query = IdentifyWBSTaskDependencies.format_query(project_plan_dict, major_phases_with_subtasks)
        
        # Get the LLM instance.
        llm = get_llm(self.llm_model)
        
        # Execute the dependency identification.
        identify_dependencies = IdentifyWBSTaskDependencies.execute(llm, query)
        dependencies_raw_dict = identify_dependencies.raw_response_dict()
        
        # Write the raw dependencies JSON to the output file.
        with self.output().open("w") as f:
            json.dump(dependencies_raw_dict, f, indent=2)
        
        logger.info("Task dependencies identified and written to %s", self.output().path)

class EstimateTaskDurationsTask(PlanTask):
    """
    This task estimates durations for WBS tasks in chunks.
    
    It depends on:
      - ProjectPlanTask: providing the project plan JSON.
      - WBSProjectLevel1AndLevel2Task: providing the major phases with subtasks and the task UUIDs.
    
    For each chunk of 3 task IDs, a raw JSON file (e.g. "011-1-task_durations_raw.json") is written,
    and an aggregated JSON file (defined by FilenameEnum.TASK_DURATIONS) is produced.

    IDEA: 1st estimate the Tasks that have zero children.
    2nd estimate tasks that have children where all children have been estimated.
    repeat until all tasks have been estimated.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)
    
    def output(self):
        # The primary output is the aggregated task durations JSON.
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.TASK_DURATIONS)))
    
    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
        }
    
    def run(self):
        logger.info("Estimating task durations...")
        
        # Load the project plan JSON.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)

        with self.input()['wbs_project'].open("r") as f:
            wbs_project_dict = json.load(f)
        wbs_project = WBSProject.from_dict(wbs_project_dict)

        # json'ish representation of the major phases in the WBS, and their subtasks.
        root_task = wbs_project.root_task
        major_tasks = [child.to_dict() for child in root_task.task_children]
        major_phases_with_subtasks = major_tasks

        # Don't include uuid of the root task. It's the child tasks that are of interest to estimate.
        decompose_task_id_list = []
        for task in wbs_project.root_task.task_children:
            decompose_task_id_list.extend(task.task_ids())

        logger.info(f"There are {len(decompose_task_id_list)} tasks to be estimated.")
        
        # Split the task IDs into chunks of 3.
        task_ids_chunks = [decompose_task_id_list[i:i + 3] for i in range(0, len(decompose_task_id_list), 3)]
        
        # In production mode, all chunks are processed.
        # In developer mode, truncate to only 2 chunks for fast turnaround cycle. Otherwise LOTS of tasks are to be estimated.
        logger.info(f"EstimateTaskDurationsTask.speedvsdetail: {self.speedvsdetail}")
        if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS:
            logger.info("FAST_BUT_SKIP_DETAILS mode, truncating to 2 chunks for testing.")
            task_ids_chunks = task_ids_chunks[:2]
        else:
            logger.info("Processing all chunks.")

        # Get the LLM instance.
        llm = get_llm(self.llm_model)
        
        # Process each chunk.
        accumulated_task_duration_list = []
        for index, task_ids_chunk in enumerate(task_ids_chunks, start=1):
            logger.info("Processing chunk %d of %d", index, len(task_ids_chunks))
            
            query = EstimateWBSTaskDurations.format_query(
                project_plan_dict,
                major_phases_with_subtasks,
                task_ids_chunk
            )
            
            estimate_durations = EstimateWBSTaskDurations.execute(llm, query)
            durations_raw_dict = estimate_durations.raw_response_dict()
            
            # Write the raw JSON for this chunk.
            filename = FilenameEnum.TASK_DURATIONS_RAW_TEMPLATE.format(index)
            raw_chunk_path = self.run_dir / filename
            with open(raw_chunk_path, "w") as f:
                json.dump(durations_raw_dict, f, indent=2)
            
            accumulated_task_duration_list.extend(durations_raw_dict.get('task_details', []))
        
        # Write the aggregated task durations.
        aggregated_path = self.file_path(FilenameEnum.TASK_DURATIONS)
        with open(aggregated_path, "w") as f:
            json.dump(accumulated_task_duration_list, f, indent=2)
        
        logger.info("Task durations estimated and aggregated results written to %s", aggregated_path)

class CreateWBSLevel3Task(PlanTask):
    """
    This task creates the Work Breakdown Structure (WBS) Level 3, by decomposing tasks from Level 2 into subtasks.
    
    It depends on:
      - ProjectPlanTask: provides the project plan JSON.
      - WBSProjectLevel1AndLevel2Task: provides the major phases with subtasks and the task UUIDs.
      - EstimateTaskDurationsTask: provides the aggregated task durations (task_duration_list).
    
    For each task without any subtasks, a query is built and executed using the LLM. 
    The raw JSON result for each task is written to a file using the template from FilenameEnum. 
    Finally, all individual results are accumulated and written as an aggregated JSON file.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)
    
    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_LEVEL3)))
    
    def requires(self):
        return {
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_project': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'task_durations': EstimateTaskDurationsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model)
        }
    
    def run(self):
        logger.info("Creating Work Breakdown Structure (WBS) Level 3...")
        
        # Load the project plan JSON.
        with self.input()['project_plan'].open("r") as f:
            project_plan_dict = json.load(f)
        
        with self.input()['wbs_project'].open("r") as f:
            wbs_project_dict = json.load(f)
        wbs_project = WBSProject.from_dict(wbs_project_dict)

        # Load the estimated task durations.
        task_duration_list_path = self.input()['task_durations'].path
        WBSPopulate.extend_project_with_durations_json(wbs_project, task_duration_list_path)

        # for each task in the wbs_project, find the task that has no children
        tasks_with_no_children = []
        def visit_task(task):
            if len(task.task_children) == 0:
                tasks_with_no_children.append(task)
            else:
                for child in task.task_children:
                    visit_task(child)
        visit_task(wbs_project.root_task)

        # for each task with no children, extract the task_id
        decompose_task_id_list = []
        for task in tasks_with_no_children:
            decompose_task_id_list.append(task.id)
        
        logger.info("There are %d tasks to be decomposed.", len(decompose_task_id_list))

        # In production mode, all chunks are processed.
        # In developer mode, truncate to only 2 chunks for fast turnaround cycle. Otherwise LOTS of tasks are to be decomposed.
        logger.info(f"CreateWBSLevel3Task.speedvsdetail: {self.speedvsdetail}")
        if self.speedvsdetail == SpeedVsDetailEnum.FAST_BUT_SKIP_DETAILS:
            logger.info("FAST_BUT_SKIP_DETAILS mode, truncating to 2 chunks for testing.")
            decompose_task_id_list = decompose_task_id_list[:2]
        else:
            logger.info("Processing all chunks.")
        
        # Get an LLM instance.
        llm = get_llm(self.llm_model)
        
        project_plan_str = format_json_for_use_in_query(project_plan_dict)
        wbs_project_str = format_json_for_use_in_query(wbs_project.to_dict())

        # Loop over each task ID.
        wbs_level3_result_accumulated = []
        total_tasks = len(decompose_task_id_list)
        for index, task_id in enumerate(decompose_task_id_list, start=1):
            logger.info("Decomposing task %d of %d", index, total_tasks)
            
            query = (
                f"The project plan:\n{project_plan_str}\n\n"
                f"Work breakdown structure:\n{wbs_project_str}\n\n"
                f"Only decompose this task:\n\"{task_id}\""
            )

            create_wbs_level3 = CreateWBSLevel3.execute(llm, query, task_id)
            wbs_level3_raw_dict = create_wbs_level3.raw_response_dict()
            
            # Write the raw JSON for this task using the FilenameEnum template.
            raw_filename = FilenameEnum.WBS_LEVEL3_RAW_TEMPLATE.value.format(index)
            raw_chunk_path = self.run_dir / raw_filename
            with open(raw_chunk_path, 'w') as f:
                json.dump(wbs_level3_raw_dict, f, indent=2)
            
            # Accumulate the decomposed tasks.
            wbs_level3_result_accumulated.extend(create_wbs_level3.tasks)
        
        # Write the aggregated WBS Level 3 result.
        aggregated_path = self.file_path(FilenameEnum.WBS_LEVEL3)
        with open(aggregated_path, 'w') as f:
            json.dump(wbs_level3_result_accumulated, f, indent=2)
        
        logger.info("WBS Level 3 created and aggregated results written to %s", aggregated_path)

class WBSProjectLevel1AndLevel2AndLevel3Task(PlanTask):
    """
    Create a WBS project from the WBS Level 1 and Level 2 and Level 3 JSON files.
    
    It depends on:
      - WBSProjectLevel1AndLevel2Task: providing the major phases with subtasks and the task UUIDs.
      - CreateWBSLevel3Task: providing the decomposed tasks.
    """
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def output(self):
        return {
            'full': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2_AND_LEVEL3_FULL))),
            'csv': luigi.LocalTarget(str(self.file_path(FilenameEnum.WBS_PROJECT_LEVEL1_AND_LEVEL2_AND_LEVEL3_CSV)))
        }
    
    def requires(self):
        return {
            'wbs_project12': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level3': CreateWBSLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
        }
    
    def run(self):
        wbs_project_path = self.input()['wbs_project12'].path
        with open(wbs_project_path, "r") as f:
            wbs_project_dict = json.load(f)
        wbs_project = WBSProject.from_dict(wbs_project_dict)

        wbs_level3_path = self.input()['wbs_level3'].path
        WBSPopulate.extend_project_with_decomposed_tasks_json(wbs_project, wbs_level3_path)

        json_representation = json.dumps(wbs_project.to_dict(), indent=2)
        with self.output()['full'].open("w") as f:
            f.write(json_representation)
        
        csv_representation = wbs_project.to_csv_string()
        with self.output()['csv'].open("w") as f:
            f.write(csv_representation)

class FullPlanPipeline(PlanTask):
    llm_model = luigi.Parameter(default=DEFAULT_LLM_MODEL)

    def requires(self):
        return {
            'setup': SetupTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail),
            'assumptions': AssumptionsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'pre_project_assessment': PreProjectAssessmentTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'project_plan': ProjectPlanTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'swot_analysis': SWOTAnalysisTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'expert_review': ExpertReviewTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level1': CreateWBSLevel1Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level2': CreateWBSLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_project12': WBSProjectLevel1AndLevel2Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'pitch': CreatePitchTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'dependencies': IdentifyTaskDependenciesTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'durations': EstimateTaskDurationsTask(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_level3': CreateWBSLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
            'wbs_project123': WBSProjectLevel1AndLevel2AndLevel3Task(run_id=self.run_id, speedvsdetail=self.speedvsdetail, llm_model=self.llm_model),
        }

    def output(self):
        return luigi.LocalTarget(str(self.file_path(FilenameEnum.PIPELINE_COMPLETE)))

    def run(self):
        with self.output().open("w") as f:
            f.write("Full pipeline executed successfully.\n")


if __name__ == '__main__':
    import colorlog
    import sys
    import os

    run_id = datetime.now().strftime("%Y%m%d_%H%M%S")

    # specify a hardcoded, and it will resume work on that directory
    # run_id = "20250205_141025"

    # if env contains "RUN_ID" then use that as the run_id
    if "RUN_ID" in os.environ:
        run_id = os.environ["RUN_ID"]

    run_dir = os.path.join("run", run_id)
    os.makedirs(run_dir, exist_ok=True)

    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)

    # Log messages on the console
    colored_formatter = colorlog.ColoredFormatter(
        "%(log_color)s%(asctime)s - %(name)s - %(levelname)s - %(message)s",
        datefmt='%Y-%m-%d %H:%M:%S',
        log_colors={
            'DEBUG':    'cyan',
            'INFO':     'green',
            'WARNING':  'yellow',
            'ERROR':    'red',
            'CRITICAL': 'red,bg_white',
        }
    )
    stdout_handler = colorlog.StreamHandler(stream=sys.stdout)
    stdout_handler.setFormatter(colored_formatter)
    stdout_handler.setLevel(logging.DEBUG)
    logger.addHandler(stdout_handler)

    # Capture logs messages to 'run/yyyymmdd_hhmmss/log.txt'
    file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    log_file = os.path.join(run_dir, "log.txt")
    file_handler = logging.FileHandler(log_file, mode='w')
    file_handler.setLevel(logging.DEBUG)
    file_handler.setFormatter(file_formatter)
    logger.addHandler(file_handler)

    logger.info(f"run_id: {run_id}")

    # Example logging messages
    if False:
        logger.debug("This is a debug message.")
        logger.info("This is an info message.")
        logger.warning("This is a warning message.")
        logger.error("This is an error message.")
        logger.critical("This is a critical message.")

    model = DEFAULT_LLM_MODEL # works
    model = "openrouter-paid-gemini-2.0-flash-001" # works
    # model = "openrouter-paid-openai-gpt-4o-mini" # often fails, I think it's not good at structured output

    if "LLM_MODEL" in os.environ:
        model = os.environ["LLM_MODEL"]

    logger.info(f"LLM model: {model}")

    speedvsdetail = SpeedVsDetailEnum.ALL_DETAILS_BUT_SLOW
    if "SPEED_VS_DETAIL" in os.environ:
        speedvsdetail_value = os.environ["SPEED_VS_DETAIL"]
        found = False
        for e in SpeedVsDetailEnum:
            if e.value == speedvsdetail_value:
                speedvsdetail = e
                found = True
                logger.info(f"Setting Speed vs Detail: {speedvsdetail}")
                break
        if not found:
            logger.error(f"Invalid value for SPEED_VS_DETAIL: {speedvsdetail_value}")
    logger.info(f"Speed vs Detail: {speedvsdetail}")

    task = FullPlanPipeline(speedvsdetail=speedvsdetail, llm_model=model)
    if run_id is not None:
        task.run_id = run_id

    # logger.info("Environment variables Luigi:\n" + get_env_as_string() + "\n\n\n")

    luigi.build([task], local_scheduler=True, workers=1)