File size: 6,547 Bytes
6369972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Perform a full SWOT analysis

Phase 1 - Determining what kind of SWOT analysis to perform
Phase 2 - Conduct the SWOT Analysis

PROMPT> python -m src.swot.swot_analysis
"""
import json
import time
import logging
from math import ceil
from dataclasses import dataclass, asdict
from src.swot.swot_phase1_determine_type import swot_phase1_determine_type
from src.swot.swot_phase2_conduct_analysis import (
    swot_phase2_conduct_analysis, 
    CONDUCT_SWOT_ANALYSIS_BUSINESS_SYSTEM_PROMPT, 
    CONDUCT_SWOT_ANALYSIS_PERSONAL_SYSTEM_PROMPT,
    CONDUCT_SWOT_ANALYSIS_OTHER_SYSTEM_PROMPT,
)
from llama_index.core.llms.llm import LLM

logger = logging.getLogger(__name__)

@dataclass
class SWOTAnalysis:
    query: str
    topic: str
    swot_type_id: str
    swot_type_verbose: str
    response_type: dict
    response_conduct: dict
    metadata: dict

    @classmethod
    def execute(cls, llm: LLM, query: str) -> 'SWOTAnalysis':
        """
        Invoke LLM to a full SWOT analysis of the provided query.
        """
        if not isinstance(llm, LLM):
            raise ValueError("Invalid llm instance.")
        if not isinstance(query, str):
            raise ValueError("Invalid query.")

        start_time = time.perf_counter()

        logging.debug("Determining SWOT analysis type...")

        json_response_type = swot_phase1_determine_type(llm, query)
        logging.debug("swot_phase1_determine_type json " + json.dumps(json_response_type, indent=2))

        type_id = json_response_type['swot_analysis_type']
        type_detailed = json_response_type['swot_analysis_type_detailed']
        topic = json_response_type['topic']

        if type_id == 'business':
            system_prompt = CONDUCT_SWOT_ANALYSIS_BUSINESS_SYSTEM_PROMPT
        elif type_id == 'personal':
            system_prompt = CONDUCT_SWOT_ANALYSIS_PERSONAL_SYSTEM_PROMPT
        elif type_id == 'other':
            system_prompt = CONDUCT_SWOT_ANALYSIS_OTHER_SYSTEM_PROMPT
            system_prompt = system_prompt.replace("INSERT_USER_TOPIC_HERE", topic)
            system_prompt = system_prompt.replace("INSERT_USER_SWOTTYPEDETAILED_HERE", type_detailed)
        else:
            raise ValueError(f"Invalid SWOT analysis type_id: {type_id}")
        
        logging.debug(f"Conducting SWOT analysis... type_id: {type_id}")
        json_response_conduct = swot_phase2_conduct_analysis(llm, query, system_prompt.strip())

        end_time = time.perf_counter()
        logging.debug("swot_phase2_conduct_analysis json " + json.dumps(json_response_conduct, indent=2))

        duration = int(ceil(end_time - start_time))
        metadata = dict(llm.metadata)
        metadata["llm_classname"] = llm.class_name()
        metadata["duration"] = duration
        metadata["query"] = query

        result = SWOTAnalysis(
            query=query,
            topic=json_response_type.get('topic', ''),
            swot_type_id=type_id,
            swot_type_verbose=json_response_type.get('swot_analysis_type_detailed', ''),
            response_type=json_response_type,
            response_conduct=json_response_conduct,
            metadata=metadata,
        )
        logger.debug("SWOTAnalysis instance created successfully.")
        return result
    
    def to_dict(self) -> dict:
        return asdict(self)

    def to_markdown(self, include_metadata=True) -> str:
        rows = []
        rows.append(f"\n## Topic")
        rows.append(f"{self.topic}")

        rows.append(f"\n## Type")
        rows.append(f"{self.swot_type_id}")

        rows.append(f"\n## Type detailed")
        rows.append(f"{self.swot_type_verbose}")

        rows.append(f"\n## Strengths 👍💪🦾")
        for item in self.response_conduct.get('strengths', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Weaknesses 👎😱🪫⚠️")
        for item in self.response_conduct.get('weaknesses', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Opportunities 🌈🌐")
        for item in self.response_conduct.get('opportunities', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Threats ☠️🛑🚨☢︎💩☣︎")
        for item in self.response_conduct.get('threats', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Recommendations 💡✅")
        for item in self.response_conduct.get('recommendations', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Strategic Objectives 🎯🔭⛳🏅")
        for item in self.response_conduct.get('strategic_objectives', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Assumptions 🤔🧠🔍")
        for item in self.response_conduct.get('assumptions', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Missing Information 🧩🤷‍♂️🤷‍♀️")
        for item in self.response_conduct.get('missing_information', []):
            rows.append(f"- {item}")

        rows.append(f"\n## Questions 🙋❓💬📌")
        for item in self.response_conduct.get('user_questions', []):
            rows.append(f"- {item}")

        if include_metadata:
            rows.append(f"\n## Metadata 📊🔧💾")
            rows.append("```json")
            json_dict = self.metadata.copy()
            json_dict['duration_response_type'] = self.response_type['metadata']['duration']
            json_dict['duration_response_conduct'] = self.response_conduct['metadata']['duration']
            rows.append(json.dumps(json_dict, indent=2))
            rows.append("```")

        return "\n".join(rows)

if __name__ == "__main__":
    import logging
    from src.prompt.prompt_catalog import PromptCatalog
    from src.llm_factory import get_llm
    import os

    logging.basicConfig(
        level=logging.DEBUG,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.StreamHandler()
        ]
    )

    prompt_catalog = PromptCatalog()
    prompt_catalog.load(os.path.join(os.path.dirname(__file__), 'data', 'example_swot_prompt.jsonl'))
    prompt_item = prompt_catalog.find("427e5163-cefa-46e8-b1d0-eb12be270e19")
    if not prompt_item:
        raise ValueError("Prompt item not found.")
    query = prompt_item.prompt

    llm = get_llm("ollama-llama3.1")

    print(f"Query: {query}")
    result = SWOTAnalysis.execute(llm, query)

    print("\nJSON:")
    print(json.dumps(asdict(result), indent=2))

    print("\n\nMarkdown:")
    print(result.to_markdown(include_metadata=False))