PlanExe / src /expert /expert_criticism.py
Simon Strandgaard
snapshot of PlanExe repo
6369972
"""
PROMPT> python -m src.expert.expert_criticism
Ask a specific expert about something, and get criticism back or constructive feedback.
"""
import json
import time
from math import ceil
from typing import Optional
from dataclasses import dataclass
from pydantic import BaseModel, Field
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.llms.llm import LLM
class NegativeFeedbackItem(BaseModel):
feedback_index: int = Field(description="Incrementing index, such as 1, 2, 3, 4, 5.")
feedback_title: str = Field(description="Constructive criticism. What is the problem?")
feedback_verbose: str = Field(description="Elaborate on the criticism. Provide more context and details.")
feedback_problem_tags: list[str] = Field(description="Short identifiers that describe the problem.")
feedback_mitigation: str = Field(description="Mitigation plan.")
feedback_consequence: str = Field(description="Without mitigation what are the consequences.")
feedback_root_cause: str = Field(description="Possible root cause.")
class ExpertConsultation(BaseModel):
"""
Status after todays meeting with the client.
"""
negative_feedback_list: list[NegativeFeedbackItem] = Field(description="Your negative feedback.")
user_primary_actions: list[str] = Field(description="List of actionable steps the user MUST take.")
user_secondary_actions: list[str] = Field(description="List of actionable steps the user should take.")
follow_up_consultation: str = Field(description="What to talk about in the next consultation.")
EXPERT_CRITICISM_SYSTEM_PROMPT = f"""
You are acting as a highly experienced:
PLACEHOLDER_ROLE
Your areas of deep knowledge include:
PLACEHOLDER_KNOWLEDGE
You possess the following key skills:
PLACEHOLDER_SKILLS
From your perspective, please analyze the provided document.
The client may be off track, provide help to get back on track.
The "negative_feedback_list" must contain 3 items.
Provide a detailed list of actions that the client must take to address the issues you identify.
In the "feedback_mitigation" field, provide a mitigation plan for each issue.
How can this be improved? Who to consult? What to read? What data to provide?
Be brutally direct and provide actionable advice based on your expertise.
Be skeptical. There may be deeper unresolved problems and root causes.
Focus specifically on areas where your expertise can offer unique insights and actionable advice.
"""
@dataclass
class ExpertCriticism:
"""
Ask an expert advise about a topic, and get criticism back.
"""
query: str
response: dict
metadata: dict
feedback_list: list[dict]
primary_actions: list[str]
secondary_actions: list[str]
follow_up: str
@classmethod
def format_system(cls, expert: dict) -> str:
if not isinstance(expert, dict):
raise ValueError("Invalid expert.")
query = EXPERT_CRITICISM_SYSTEM_PROMPT.strip()
role = expert.get('title', 'No role specified')
knowledge = expert.get('knowledge', 'No knowledge specified')
skills = expert.get('skills', 'No skills specified')
query = query.replace("PLACEHOLDER_ROLE", role)
query = query.replace("PLACEHOLDER_KNOWLEDGE", knowledge)
query = query.replace("PLACEHOLDER_SKILLS", skills)
return query
@classmethod
def format_query(cls, document_title: str, document_content: str) -> str:
if not isinstance(document_title, str):
raise ValueError("Invalid document_title.")
if not isinstance(document_content, str):
raise ValueError("Invalid document_content.")
query = f"""
{document_title}:
{document_content}
"""
return query
@classmethod
def execute(cls, llm: LLM, query: str, system_prompt: Optional[str]) -> 'ExpertCriticism':
"""
Invoke LLM to get advise from the expert.
"""
if not isinstance(llm, LLM):
raise ValueError("Invalid LLM instance.")
if not isinstance(query, str):
raise ValueError("Invalid query.")
chat_message_list = []
if system_prompt:
chat_message_list.append(
ChatMessage(
role=MessageRole.SYSTEM,
content=system_prompt,
)
)
chat_message_user = ChatMessage(
role=MessageRole.USER,
content=query,
)
chat_message_list.append(chat_message_user)
start_time = time.perf_counter()
sllm = llm.as_structured_llm(ExpertConsultation)
chat_response = sllm.chat(chat_message_list)
json_response = json.loads(chat_response.message.content)
end_time = time.perf_counter()
duration = int(ceil(end_time - start_time))
metadata = dict(llm.metadata)
metadata["llm_classname"] = llm.class_name()
metadata["duration"] = duration
# Cleanup the json response from the LLM model.
result_feedback_list = []
for item in json_response['negative_feedback_list']:
d = {
'title': item.get('feedback_title', ''),
'verbose': item.get('feedback_verbose', ''),
'tags': item.get('feedback_problem_tags', []),
'mitigation': item.get('feedback_mitigation', ''),
'consequence': item.get('feedback_consequence', ''),
'root_cause': item.get('feedback_root_cause', ''),
}
result_feedback_list.append(d)
result = ExpertCriticism(
query=query,
response=json_response,
metadata=metadata,
feedback_list=result_feedback_list,
primary_actions=json_response.get('user_primary_actions', []),
secondary_actions=json_response.get('user_secondary_actions', []),
follow_up=json_response.get('follow_up_consultation', '')
)
return result
def to_dict(self, include_metadata=True, include_query=True) -> dict:
d = self.response.copy()
if include_metadata:
d['metadata'] = self.metadata
if include_query:
d['query'] = self.query
return d
def save_raw(self, file_path: str) -> None:
with open(file_path, 'w') as f:
f.write(json.dumps(self.to_dict(), indent=2))
if __name__ == "__main__":
from src.llm_factory import get_llm
import os
path1 = os.path.join(os.path.dirname(__file__), 'test_data', 'solarfarm_swot_analysis.md')
path2 = os.path.join(os.path.dirname(__file__), 'test_data', 'solarfarm_expert_list.json')
with open(path1, 'r', encoding='utf-8') as f:
swot_markdown = f.read()
with open(path2, 'r', encoding='utf-8') as f:
expert_list_json = json.load(f)
expert = expert_list_json[5]
expert.pop('id')
system_prompt = ExpertCriticism.format_system(expert)
query = ExpertCriticism.format_query("SWOT Analysis", swot_markdown)
llm = get_llm("ollama-llama3.1")
# llm = get_llm("deepseek-chat")
print(f"System: {system_prompt}")
print(f"\n\nQuery: {query}")
result = ExpertCriticism.execute(llm, query, system_prompt)
print("\n\nResponse:")
print(json.dumps(result.to_dict(include_query=False), indent=2))
print("\n\nFeedback:")
print(json.dumps(result.feedback_list, indent=2))