PlanExe / src /expert /expert_finder.py
Simon Strandgaard
snapshot of PlanExe repo
6369972
"""
PROMPT> python -m src.expert.expert_finder
Find experts that can take a look at the a document, such as a 'SWOT analysis' and provide feedback.
IDEA: Specify a number of experts to be obtained. Currently it's hardcoded 8.
When it's 4 or less, then there is no need to make a second call to the LLM model.
When it's 9 or more, then make multiple calls to the LLM model to get more experts.
"""
import json
import time
import logging
from math import ceil
from uuid import uuid4
from typing import List, Optional, Any
from dataclasses import dataclass
from pydantic import BaseModel, Field
from llama_index.core.llms.llm import LLM
from llama_index.core.llms import ChatMessage, MessageRole
logger = logging.getLogger(__name__)
class Expert(BaseModel):
expert_title: str = Field(description="Job title of the expert.")
expert_knowledge: str = Field(description="Industry Knowledge/Specialization, specific industries or subfields where they have focused their career, such as: tech industry for an IT consultant, healthcare sector for a medical expert. **Must be a brief comma separated list**.")
expert_why: str = Field(description="Why can this expert be of help. Area of expertise.")
expert_what: str = Field(description="Describe what area of this document the role should advise about.")
expert_relevant_skills: str = Field(description="Skills that are relevant to the document.")
expert_search_query: str = Field(description="What query to use when searching for this expert.")
class ExpertDetails(BaseModel):
experts: list[Expert] = Field(description="List of experts.")
EXPERT_FINDER_SYSTEM_PROMPT = """
Professionals who can offer specialized perspectives and recommendations based on the document.
Ensure that each expert role directly aligns with specific sections or themes within the document.
This could involve linking particular strengths, weaknesses, opportunities, threats, extra sections, to the expertise required.
Diversity in the types of experts suggested by considering interdisciplinary insights that might not be
immediately obvious but could offer unique perspectives on the document.
Account for geographical and contextual relevance, variations in terminology or regional differences that may affect the search outcome.
The "expert_search_query" field is a human readable text for searching in Google/DuckDuckGo/LinkedIn.
Find exactly 4 experts.
"""
@dataclass
class ExpertFinder:
"""
Find experts that can advise about the particular domain.
"""
system_prompt: Optional[str]
user_prompt: str
response: dict
metadata: dict
expert_list: list[dict]
@classmethod
def execute(cls, llm: LLM, user_prompt: str, **kwargs: Any) -> 'ExpertFinder':
"""
Invoke LLM to find the best suited experts that can advise about attached file.
"""
if not isinstance(llm, LLM):
raise ValueError("Invalid LLM instance.")
if not isinstance(user_prompt, str):
raise ValueError("Invalid query.")
default_args = {
'system_prompt': EXPERT_FINDER_SYSTEM_PROMPT.strip()
}
default_args.update(kwargs)
system_prompt = default_args.get('system_prompt')
logger.debug(f"System Prompt:\n{system_prompt}")
if system_prompt and not isinstance(system_prompt, str):
raise ValueError("Invalid system prompt.")
chat_message_list1 = []
if system_prompt:
chat_message_list1.append(
ChatMessage(
role=MessageRole.SYSTEM,
content=system_prompt,
)
)
logger.debug(f"User Prompt:\n{user_prompt}")
chat_message_user1 = ChatMessage(
role=MessageRole.USER,
content=user_prompt,
)
chat_message_list1.append(chat_message_user1)
sllm = llm.as_structured_llm(ExpertDetails)
logger.debug("Starting LLM chat interaction 1.")
start_time = time.perf_counter()
chat_response1 = sllm.chat(chat_message_list1)
end_time = time.perf_counter()
duration1 = int(ceil(end_time - start_time))
response_byte_count1 = len(chat_response1.message.content.encode('utf-8'))
logger.info(f"LLM chat interaction completed in {duration1} seconds. Response byte count: {response_byte_count1}")
# Do a follow up question, for obtaining more experts.
chat_message_assistant2 = ChatMessage(
role=MessageRole.ASSISTANT,
content=chat_response1.message.content,
)
chat_message_user2 = ChatMessage(
role=MessageRole.USER,
content="4 more please",
)
chat_message_list2 = chat_message_list1.copy()
chat_message_list2.append(chat_message_assistant2)
chat_message_list2.append(chat_message_user2)
logger.debug("Starting LLM chat interaction 2.")
start_time = time.perf_counter()
chat_response2 = sllm.chat(chat_message_list2)
end_time = time.perf_counter()
duration2 = int(ceil(end_time - start_time))
response_byte_count2 = len(chat_response2.message.content.encode('utf-8'))
logger.info(f"LLM chat interaction completed in {duration2} seconds. Response byte count: {response_byte_count2}")
metadata = dict(llm.metadata)
metadata["llm_classname"] = llm.class_name()
metadata["duration1"] = duration1
metadata["duration2"] = duration2
metadata["response_byte_count1"] = response_byte_count1
metadata["response_byte_count2"] = response_byte_count2
json_response1 = json.loads(chat_response1.message.content)
json_response2 = json.loads(chat_response2.message.content)
json_response_merged = {}
experts1 = json_response1.get('experts', [])
experts2 = json_response2.get('experts', [])
json_response_merged['experts'] = experts1 + experts2
# Cleanup the json response from the LLM model, extract the experts.
expert_list = []
for expert in json_response_merged['experts']:
uuid = str(uuid4())
expert_dict = {
"id": uuid,
"title": expert['expert_title'],
"knowledge": expert['expert_knowledge'],
"why": expert['expert_why'],
"what": expert['expert_what'],
"skills": expert['expert_relevant_skills'],
"search_query": expert['expert_search_query'],
}
expert_list.append(expert_dict)
logger.info(f"Found {len(expert_list)} experts.")
result = ExpertFinder(
system_prompt=system_prompt,
user_prompt=user_prompt,
response=json_response_merged,
metadata=metadata,
expert_list=expert_list,
)
logger.debug("CreateProjectPlan instance created successfully.")
return result
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict:
d = self.response.copy()
if include_metadata:
d['metadata'] = self.metadata
if include_system_prompt:
d['system_prompt'] = self.system_prompt
if include_user_prompt:
d['user_prompt'] = self.user_prompt
return d
def save_raw(self, file_path: str) -> None:
with open(file_path, 'w') as f:
f.write(json.dumps(self.to_dict(), indent=2))
def save_cleanedup(self, file_path: str) -> None:
with open(file_path, 'w') as f:
f.write(json.dumps(self.expert_list, indent=2))
if __name__ == "__main__":
import logging
from src.llm_factory import get_llm
import os
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
path = os.path.join(os.path.dirname(__file__), 'test_data', 'solarfarm_swot_analysis.md')
with open(path, 'r', encoding='utf-8') as f:
swot_markdown = f.read()
query = f"SWOT Analysis:\n{swot_markdown}"
llm = get_llm("ollama-llama3.1")
# llm = get_llm("deepseek-chat", max_tokens=8192)
print(f"Query: {query}")
result = ExpertFinder.execute(llm, query)
print("\n\nResponse:")
print(json.dumps(result.to_dict(include_system_prompt=False, include_user_prompt=False), indent=2))
print("\n\nExperts:")
print(json.dumps(result.expert_list, indent=2))