PlanExe / src /fiction /fiction_writer.py
Simon Strandgaard
snapshot of PlanExe repo
6369972
"""
Based on short description, make a longer description.
PROMPT> python -m src.fiction.fiction_writer
"""
import json
import time
import logging
from math import ceil
from typing import Optional
from dataclasses import dataclass
from pydantic import BaseModel, Field
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.llms.llm import LLM
logger = logging.getLogger(__name__)
class BookDraft(BaseModel):
book_title: str = Field(description="Human readable title.")
overview: str = Field(description="What is this about?")
elaborate: str = Field(description="Details")
background_story: str = Field(description="What is the background story.")
blurb: str = Field(description="The back cover of the book. Immediately capture the readers attention.")
goal: str = Field(description="What is the goal.")
main_characters: list[str] = Field(description="List of characters in the story and their background story.")
character_flaws: list[str] = Field(description="Character flaws relevant to the story.")
plot_devices: list[str] = Field(description="Items that appear in the story.")
possible_plot_ideas: list[str] = Field(description="List of story directions.")
challenges: list[str] = Field(description="Things that could go wrong or be difficult.")
chapter_title_list: list[str] = Field(description="Name of each chapter.")
final_story: str = Field(description="Based on the above, what is the final story.")
@dataclass
class FictionWriter:
"""
Given a short text, elaborate on it.
"""
query: str
response: dict
metadata: dict
@classmethod
def execute(cls, llm: LLM, query: str, system_prompt: Optional[str]) -> 'FictionWriter':
"""
Invoke LLM to write a fiction based on the query.
"""
if not isinstance(llm, LLM):
raise ValueError("Invalid LLM instance.")
if not isinstance(query, str):
raise ValueError("Invalid query.")
chat_message_list = []
if system_prompt:
chat_message_list.append(
ChatMessage(
role=MessageRole.SYSTEM,
content=system_prompt,
)
)
chat_message_list.append(ChatMessage(
role=MessageRole.USER,
content=query
))
start_time = time.perf_counter()
sllm = llm.as_structured_llm(BookDraft)
try:
chat_response = sllm.chat(chat_message_list)
except Exception as e:
logger.error(f"FictionWriter failed to chat with LLM: {e}")
raise ValueError(f"Failed to chat with LLM: {e}")
json_response = json.loads(chat_response.message.content)
end_time = time.perf_counter()
duration = int(ceil(end_time - start_time))
metadata = dict(llm.metadata)
metadata["llm_classname"] = llm.class_name()
metadata["duration"] = duration
result = FictionWriter(
query=query,
response=json_response,
metadata=metadata
)
return result
def raw_response_dict(self, include_metadata=True, include_query=True) -> dict:
d = self.response.copy()
if include_metadata:
d['metadata'] = self.metadata
if include_query:
d['query'] = self.query
return d
if __name__ == "__main__":
from src.llm_factory import get_llm
from src.prompt.prompt_catalog import PromptCatalog
import os
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
system_prompt = "You are a fiction writer that has been given a short description to elaborate on."
system_prompt = "You are a non-fiction writer that has been given a short description to elaborate on."
prompt_catalog = PromptCatalog()
prompt_catalog.load(os.path.join(os.path.dirname(__file__), 'data', 'simple_fiction_prompts.jsonl'))
prompt_item = prompt_catalog.find("0e8e9b9d-95dd-4632-b47c-dcc4625a556d")
if not prompt_item:
raise ValueError("Prompt item not found.")
query = prompt_item.prompt
llm = get_llm("ollama-llama3.1") # works
# llm = get_llm("openrouter-paid-gemini-2.0-flash-001") # works
# llm = get_llm("ollama-qwen")
# llm = get_llm("ollama-phi")
# llm = get_llm("deepseek-chat")
print(f"System: {system_prompt}")
print(f"\n\nQuery: {query}")
result = FictionWriter.execute(llm, query, system_prompt)
print("\n\nResponse:")
print(json.dumps(result.raw_response_dict(include_query=False), indent=2))