PlanExe / src /pitch /convert_pitch_to_markdown.py
Simon Strandgaard
Snapshot of PlanExe commit d1eee4b3f276c3f079b95539dafb7f1f794abfa4
22a5c6c
"""
Convert the raw json pitch to a markdown document.
PROMPT> python -m src.pitch.convert_pitch_to_markdown
"""
import os
import json
import time
import logging
from math import ceil
from typing import Optional
from dataclasses import dataclass
from llama_index.core.llms.llm import LLM
from llama_index.core.llms import ChatMessage, MessageRole
from src.format_json_for_use_in_query import format_json_for_use_in_query
from src.markdown_util.fix_bullet_lists import fix_bullet_lists
logger = logging.getLogger(__name__)
CONVERT_PITCH_TO_MARKDOWN_SYSTEM_PROMPT = """
You are a content formatter designed to transform project pitches into compelling and easily scannable Markdown documents. Your ONLY task is to generate the Markdown document itself, and NOTHING ELSE.
# Output Requirements:
- ABSOLUTELY NO INTRODUCTORY OR CONCLUDING TEXT. Do NOT add any extra sentences or paragraphs before or after the Markdown document.
- Enclose the ENTIRE Markdown document within the following delimiters:
- **Start Delimiter:** [START_MARKDOWN]
- **End DelIMITER:** [END_MARKDOWN]
- Use ONLY the provided text. Do NOT add any external information.
# Markdown Formatting Instructions:
- **Headings:** Use only two levels of headings:
- Top-level heading for the document title: `# Top Level Heading`
- Second-level headings for section titles: `## Section Title`
- DO NOT use any heading levels beyond these two.
- **Document Structure:**
- The input JSON may contain minimal content or multiple topics.
- If multiple topics are present, organize them into logical sections. Suggested section names include (but are not limited to): Introduction, Project Overview, Goals and Objectives, Risks and Mitigation Strategies, Metrics for Success, Stakeholder Benefits, Ethical Considerations, Collaboration Opportunities, and Long-term Vision.
- If the input JSON is minimal, include only the sections that are directly supported by the provided content. Do not invent or add sections that are not referenced in the input.
- **Lists:** Format lists with Markdown bullet points using a hyphen followed by a space:
```markdown
- Item 1
- Item 2
- Item 3
```
- **Strategic Bolding:** Bold key project elements, critical actions, and desired outcomes to enhance scannability. For example, bold terms such as **innovation**, **efficiency**, **sustainability**, and **collaboration**. Ensure that each section contains at least one bolded key term where applicable.
- **Expansion:** Expand on the provided content with additional explanatory paragraphs where needed, but do NOT add information that is not present in the input.
- **Delimiters Enforcement:** Ensure that the entire Markdown document is wrapped exactly within [START_MARKDOWN] and [END_MARKDOWN] with no additional text outside these delimiters.
- Ensure that all topics present in the input JSON are covered and organized in a clear, readable format.
"""
@dataclass
class ConvertPitchToMarkdown:
system_prompt: Optional[str]
user_prompt: str
response: str
markdown: str
metadata: dict
@classmethod
def execute(cls, llm: LLM, user_prompt: str) -> 'ConvertPitchToMarkdown':
"""
Invoke LLM with a json document that is the raw pitch.
"""
if not isinstance(llm, LLM):
raise ValueError("Invalid LLM instance.")
if not isinstance(user_prompt, str):
raise ValueError("Invalid query.")
system_prompt = CONVERT_PITCH_TO_MARKDOWN_SYSTEM_PROMPT.strip()
chat_message_list = [
ChatMessage(
role=MessageRole.SYSTEM,
content=system_prompt,
),
ChatMessage(
role=MessageRole.USER,
content=user_prompt,
)
]
logger.debug(f"User Prompt:\n{user_prompt}")
logger.debug("Starting LLM chat interaction.")
start_time = time.perf_counter()
chat_response = llm.chat(chat_message_list)
end_time = time.perf_counter()
duration = int(ceil(end_time - start_time))
response_byte_count = len(chat_response.message.content.encode('utf-8'))
logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}")
metadata = dict(llm.metadata)
metadata["llm_classname"] = llm.class_name()
metadata["duration"] = duration
metadata["response_byte_count"] = response_byte_count
response_content = chat_response.message.content
start_delimiter = "[START_MARKDOWN]"
end_delimiter = "[END_MARKDOWN]"
start_index = response_content.find(start_delimiter)
end_index = response_content.find(end_delimiter)
if start_index != -1 and end_index != -1:
markdown_content = response_content[start_index + len(start_delimiter):end_index].strip()
else:
markdown_content = response_content # Use the entire content if delimiters are missing
logger.warning("Output delimiters not found in LLM response.")
# The bullet lists are supposed to be preceded by 2 newlines.
# However often there is just 1 newline.
# This fix makes sure there are 2 newlines before bullet lists.
markdown_content = fix_bullet_lists(markdown_content)
json_response = {}
json_response['response_content'] = response_content
json_response['markdown'] = markdown_content
result = ConvertPitchToMarkdown(
system_prompt=system_prompt,
user_prompt=user_prompt,
response=json_response,
markdown=markdown_content,
metadata=metadata,
)
logger.debug("CleanupPitch instance created successfully.")
return result
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict:
d = self.response.copy()
d['markdown'] = self.markdown
if include_metadata:
d['metadata'] = self.metadata
if include_system_prompt:
d['system_prompt'] = self.system_prompt
if include_user_prompt:
d['user_prompt'] = self.user_prompt
return d
def save_raw(self, file_path: str) -> None:
with open(file_path, 'w') as f:
f.write(json.dumps(self.to_dict(), indent=2))
def save_markdown(self, file_path: str) -> None:
with open(file_path, "w", encoding="utf-8") as f:
f.write(self.markdown)
if __name__ == "__main__":
from src.llm_factory import get_llm
basepath = os.path.join(os.path.dirname(__file__), 'test_data')
def load_json(relative_path: str) -> dict:
path = os.path.join(basepath, relative_path)
print(f"loading file: {path}")
with open(path, 'r', encoding='utf-8') as f:
the_json = json.load(f)
return the_json
pitch_json = load_json('lunar_base-pitch.json')
model_name = "ollama-llama3.1"
# model_name = "ollama-qwen2.5-coder"
llm = get_llm(model_name)
query = format_json_for_use_in_query(pitch_json)
print(f"Query: {query}")
result = ConvertPitchToMarkdown.execute(llm, query)
print("\nResponse:")
json_response = result.to_dict(include_system_prompt=False, include_user_prompt=False)
print(json.dumps(json_response, indent=2))
print(f"\n\nMarkdown:\n{result.markdown}")