|
""" |
|
Convert the raw json pitch to a markdown document. |
|
|
|
PROMPT> python -m src.pitch.convert_pitch_to_markdown |
|
""" |
|
import os |
|
import json |
|
import time |
|
import logging |
|
from math import ceil |
|
from typing import Optional |
|
from dataclasses import dataclass |
|
from llama_index.core.llms.llm import LLM |
|
from llama_index.core.llms import ChatMessage, MessageRole |
|
from src.format_json_for_use_in_query import format_json_for_use_in_query |
|
from src.markdown_util.fix_bullet_lists import fix_bullet_lists |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
CONVERT_PITCH_TO_MARKDOWN_SYSTEM_PROMPT = """ |
|
You are a content formatter designed to transform project pitches into compelling and easily scannable Markdown documents. Your ONLY task is to generate the Markdown document itself, and NOTHING ELSE. |
|
|
|
# Output Requirements: |
|
- ABSOLUTELY NO INTRODUCTORY OR CONCLUDING TEXT. Do NOT add any extra sentences or paragraphs before or after the Markdown document. |
|
- Enclose the ENTIRE Markdown document within the following delimiters: |
|
- **Start Delimiter:** [START_MARKDOWN] |
|
- **End DelIMITER:** [END_MARKDOWN] |
|
- Use ONLY the provided text. Do NOT add any external information. |
|
|
|
# Markdown Formatting Instructions: |
|
- **Headings:** Use only two levels of headings: |
|
- Top-level heading for the document title: `# Top Level Heading` |
|
- Second-level headings for section titles: `## Section Title` |
|
- DO NOT use any heading levels beyond these two. |
|
- **Document Structure:** |
|
- The input JSON may contain minimal content or multiple topics. |
|
- If multiple topics are present, organize them into logical sections. Suggested section names include (but are not limited to): Introduction, Project Overview, Goals and Objectives, Risks and Mitigation Strategies, Metrics for Success, Stakeholder Benefits, Ethical Considerations, Collaboration Opportunities, and Long-term Vision. |
|
- If the input JSON is minimal, include only the sections that are directly supported by the provided content. Do not invent or add sections that are not referenced in the input. |
|
- **Lists:** Format lists with Markdown bullet points using a hyphen followed by a space: |
|
```markdown |
|
- Item 1 |
|
- Item 2 |
|
- Item 3 |
|
``` |
|
- **Strategic Bolding:** Bold key project elements, critical actions, and desired outcomes to enhance scannability. For example, bold terms such as **innovation**, **efficiency**, **sustainability**, and **collaboration**. Ensure that each section contains at least one bolded key term where applicable. |
|
- **Expansion:** Expand on the provided content with additional explanatory paragraphs where needed, but do NOT add information that is not present in the input. |
|
- **Delimiters Enforcement:** Ensure that the entire Markdown document is wrapped exactly within [START_MARKDOWN] and [END_MARKDOWN] with no additional text outside these delimiters. |
|
- Ensure that all topics present in the input JSON are covered and organized in a clear, readable format. |
|
""" |
|
|
|
@dataclass |
|
class ConvertPitchToMarkdown: |
|
system_prompt: Optional[str] |
|
user_prompt: str |
|
response: str |
|
markdown: str |
|
metadata: dict |
|
|
|
@classmethod |
|
def execute(cls, llm: LLM, user_prompt: str) -> 'ConvertPitchToMarkdown': |
|
""" |
|
Invoke LLM with a json document that is the raw pitch. |
|
""" |
|
if not isinstance(llm, LLM): |
|
raise ValueError("Invalid LLM instance.") |
|
if not isinstance(user_prompt, str): |
|
raise ValueError("Invalid query.") |
|
|
|
system_prompt = CONVERT_PITCH_TO_MARKDOWN_SYSTEM_PROMPT.strip() |
|
chat_message_list = [ |
|
ChatMessage( |
|
role=MessageRole.SYSTEM, |
|
content=system_prompt, |
|
), |
|
ChatMessage( |
|
role=MessageRole.USER, |
|
content=user_prompt, |
|
) |
|
] |
|
|
|
logger.debug(f"User Prompt:\n{user_prompt}") |
|
|
|
logger.debug("Starting LLM chat interaction.") |
|
start_time = time.perf_counter() |
|
chat_response = llm.chat(chat_message_list) |
|
end_time = time.perf_counter() |
|
duration = int(ceil(end_time - start_time)) |
|
response_byte_count = len(chat_response.message.content.encode('utf-8')) |
|
logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}") |
|
|
|
metadata = dict(llm.metadata) |
|
metadata["llm_classname"] = llm.class_name() |
|
metadata["duration"] = duration |
|
metadata["response_byte_count"] = response_byte_count |
|
|
|
response_content = chat_response.message.content |
|
|
|
start_delimiter = "[START_MARKDOWN]" |
|
end_delimiter = "[END_MARKDOWN]" |
|
|
|
start_index = response_content.find(start_delimiter) |
|
end_index = response_content.find(end_delimiter) |
|
|
|
if start_index != -1 and end_index != -1: |
|
markdown_content = response_content[start_index + len(start_delimiter):end_index].strip() |
|
else: |
|
markdown_content = response_content |
|
logger.warning("Output delimiters not found in LLM response.") |
|
|
|
|
|
|
|
|
|
markdown_content = fix_bullet_lists(markdown_content) |
|
|
|
json_response = {} |
|
json_response['response_content'] = response_content |
|
json_response['markdown'] = markdown_content |
|
|
|
result = ConvertPitchToMarkdown( |
|
system_prompt=system_prompt, |
|
user_prompt=user_prompt, |
|
response=json_response, |
|
markdown=markdown_content, |
|
metadata=metadata, |
|
) |
|
logger.debug("CleanupPitch instance created successfully.") |
|
return result |
|
|
|
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict: |
|
d = self.response.copy() |
|
d['markdown'] = self.markdown |
|
if include_metadata: |
|
d['metadata'] = self.metadata |
|
if include_system_prompt: |
|
d['system_prompt'] = self.system_prompt |
|
if include_user_prompt: |
|
d['user_prompt'] = self.user_prompt |
|
return d |
|
|
|
def save_raw(self, file_path: str) -> None: |
|
with open(file_path, 'w') as f: |
|
f.write(json.dumps(self.to_dict(), indent=2)) |
|
|
|
def save_markdown(self, file_path: str) -> None: |
|
with open(file_path, "w", encoding="utf-8") as f: |
|
f.write(self.markdown) |
|
|
|
if __name__ == "__main__": |
|
from src.llm_factory import get_llm |
|
|
|
basepath = os.path.join(os.path.dirname(__file__), 'test_data') |
|
|
|
def load_json(relative_path: str) -> dict: |
|
path = os.path.join(basepath, relative_path) |
|
print(f"loading file: {path}") |
|
with open(path, 'r', encoding='utf-8') as f: |
|
the_json = json.load(f) |
|
return the_json |
|
|
|
pitch_json = load_json('lunar_base-pitch.json') |
|
|
|
model_name = "ollama-llama3.1" |
|
|
|
llm = get_llm(model_name) |
|
|
|
query = format_json_for_use_in_query(pitch_json) |
|
print(f"Query: {query}") |
|
result = ConvertPitchToMarkdown.execute(llm, query) |
|
|
|
print("\nResponse:") |
|
json_response = result.to_dict(include_system_prompt=False, include_user_prompt=False) |
|
print(json.dumps(json_response, indent=2)) |
|
|
|
print(f"\n\nMarkdown:\n{result.markdown}") |
|
|