|
""" |
|
WBS Level 3: Create a Work Breakdown Structure (WBS) from a project plan. |
|
|
|
https://en.wikipedia.org/wiki/Work_breakdown_structure |
|
|
|
The "progressive elaboration" technique is used to decompose big tasks into smaller, more manageable subtasks. |
|
""" |
|
import os |
|
import json |
|
import time |
|
from dataclasses import dataclass |
|
from math import ceil |
|
from typing import List, Optional |
|
from uuid import uuid4 |
|
from dataclasses import dataclass |
|
from pydantic import BaseModel, Field |
|
from llama_index.core.llms.llm import LLM |
|
from src.format_json_for_use_in_query import format_json_for_use_in_query |
|
|
|
class WBSSubtask(BaseModel): |
|
""" |
|
A subtask. |
|
""" |
|
name: str = Field( |
|
description="Short name of the subtask, such as: Prepare necessary documentation for permits, Conduct interviews with potential contractors, Secure final approval of funds." |
|
) |
|
description: str = Field( |
|
description="Longer text that describes the subtask in more detail, such as: Objective, Scope, Steps, Deliverables." |
|
) |
|
resources_needed: list[str] = Field( |
|
description="List of resources needed to complete the subtask. Example: ['Project manager', 'Architect', 'Engineer', 'Construction crew']." |
|
) |
|
|
|
class WBSTaskDetails(BaseModel): |
|
""" |
|
A big task in the project decomposed into a few smaller tasks. |
|
""" |
|
subtasks: list[WBSSubtask] = Field( |
|
description="List of subtasks." |
|
) |
|
|
|
QUERY_PREAMBLE = f""" |
|
Decompose a big task into smaller, more manageable subtasks. |
|
|
|
Split the task into 3 to 5 subtasks. |
|
|
|
Pick a subtask name that is short, max 7 words or max 60 characters. |
|
|
|
Don't enumerate the subtasks with integers or letters. |
|
|
|
Don't assign a uuid to the subtask. |
|
|
|
""" |
|
|
|
@dataclass |
|
class CreateWBSLevel3: |
|
""" |
|
WBS Level 3: Creating a Work Breakdown Structure (WBS) from a project plan. |
|
""" |
|
query: str |
|
response: dict |
|
metadata: dict |
|
tasks: list[dict] |
|
task_uuids: list[str] |
|
|
|
@classmethod |
|
def format_query(cls, plan_json: dict, wbs_level1_json: dict, wbs_level2_json: list, wbs_level2_task_durations_json: dict, decompose_task_id: str) -> str: |
|
if not isinstance(plan_json, dict): |
|
raise ValueError("Invalid plan_json.") |
|
if not isinstance(wbs_level1_json, dict): |
|
raise ValueError("Invalid wbs_level1_json.") |
|
if not isinstance(wbs_level2_json, list): |
|
raise ValueError("Invalid wbs_level1_json.") |
|
if not isinstance(wbs_level2_task_durations_json, list): |
|
raise ValueError("Invalid wbs_level2_task_durations_json.") |
|
if not isinstance(decompose_task_id, str): |
|
raise ValueError("Invalid decompose_task_id.") |
|
|
|
query = f""" |
|
The project plan: |
|
{format_json_for_use_in_query(plan_json)} |
|
|
|
WBS Level 1: |
|
{format_json_for_use_in_query(wbs_level1_json)} |
|
|
|
WBS Level 2: |
|
{format_json_for_use_in_query(wbs_level2_json)} |
|
|
|
WBS Level 2 time estimates: |
|
{format_json_for_use_in_query(wbs_level2_task_durations_json)} |
|
|
|
Only decompose this task: |
|
"{decompose_task_id}" |
|
""" |
|
return query |
|
|
|
@classmethod |
|
def execute(cls, llm: LLM, query: str, decompose_task_id: str) -> 'CreateWBSLevel3': |
|
""" |
|
Invoke LLM to decompose a big WBS level 2 task into smaller tasks. |
|
""" |
|
if not isinstance(llm, LLM): |
|
raise ValueError("Invalid LLM instance.") |
|
if not isinstance(query, str): |
|
raise ValueError("Invalid query.") |
|
if not isinstance(decompose_task_id, str): |
|
raise ValueError("Invalid decompose_task_id.") |
|
|
|
start_time = time.perf_counter() |
|
|
|
sllm = llm.as_structured_llm(WBSTaskDetails) |
|
response = sllm.complete(QUERY_PREAMBLE + query) |
|
json_response = json.loads(response.text) |
|
|
|
end_time = time.perf_counter() |
|
duration = int(ceil(end_time - start_time)) |
|
|
|
metadata = dict(llm.metadata) |
|
metadata["llm_classname"] = llm.class_name() |
|
metadata["duration"] = duration |
|
|
|
|
|
parent_task_id = decompose_task_id |
|
result_tasks = [] |
|
result_task_uuids = [] |
|
for subtask in json_response['subtasks']: |
|
name = subtask['name'] |
|
description = subtask['description'] |
|
resources_needed = subtask['resources_needed'] |
|
uuid = str(uuid4()) |
|
subtask_item = { |
|
"id": uuid, |
|
"name": name, |
|
"description": description, |
|
"resources_needed": resources_needed, |
|
"parent_id": parent_task_id |
|
} |
|
result_tasks.append(subtask_item) |
|
result_task_uuids.append(uuid) |
|
|
|
result = CreateWBSLevel3( |
|
query=query, |
|
response=json_response, |
|
metadata=metadata, |
|
tasks=result_tasks, |
|
task_uuids=result_task_uuids |
|
) |
|
return result |
|
|
|
def raw_response_dict(self, include_metadata=True, include_query=True) -> dict: |
|
d = self.response.copy() |
|
if include_metadata: |
|
d['metadata'] = self.metadata |
|
if include_query: |
|
d['query'] = self.query |
|
return d |
|
|
|
if __name__ == "__main__": |
|
from llama_index.llms.ollama import Ollama |
|
|
|
|
|
basepath = '/Users/neoneye/Desktop/planexe_data' |
|
|
|
def load_json(relative_path: str) -> dict: |
|
path = os.path.join(basepath, relative_path) |
|
print(f"loading file: {path}") |
|
with open(path, 'r', encoding='utf-8') as f: |
|
the_json = json.load(f) |
|
return the_json |
|
|
|
plan_json = load_json('002-project_plan.json') |
|
wbs_level1_json = load_json('006-wbs_level1.json') |
|
wbs_level2_json = load_json('008-wbs_level2.json') |
|
wbs_level2_task_durations_json = load_json('012-task_durations.json') |
|
decompose_task_id = "1c690f4a-ae8e-493d-9e47-6da58ef5b24c" |
|
|
|
query = CreateWBSLevel3.format_query(plan_json, wbs_level1_json, wbs_level2_json, wbs_level2_task_durations_json, decompose_task_id) |
|
|
|
model_name = "llama3.1:latest" |
|
|
|
|
|
llm = Ollama(model=model_name, request_timeout=120.0, temperature=0.5, is_function_calling_model=False) |
|
|
|
print(f"Query: {query}") |
|
result = CreateWBSLevel3.execute(llm, query, decompose_task_id) |
|
|
|
print("\n\nResponse:") |
|
print(json.dumps(result.raw_response_dict(include_query=False), indent=2)) |
|
|
|
print("\n\nExtracted tasks:") |
|
print(json.dumps(result.tasks, indent=2)) |
|
|
|
|