|
""" |
|
Suggest similar past or existing projects that can be used as a reference for the current project. |
|
|
|
PROMPT> python -m src.plan.related_resources |
|
""" |
|
import os |
|
import json |
|
import time |
|
import logging |
|
from math import ceil |
|
from dataclasses import dataclass |
|
from pydantic import BaseModel, Field |
|
from llama_index.core.llms import ChatMessage, MessageRole |
|
from llama_index.core.llms.llm import LLM |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class SuggestionItem(BaseModel): |
|
item_index: int = Field( |
|
description="Enumeration, starting from 1." |
|
) |
|
project_name: str = Field( |
|
description="The name of the project." |
|
) |
|
project_description: str = Field( |
|
description="A description of the project." |
|
) |
|
success_metrics: list[str] = Field( |
|
description="Indicators of success, challenges encountered, and project outcomes." |
|
) |
|
risks_and_challenges_faced: list[str] = Field( |
|
description="Explain how each project overcame or mitigated these challenges to provide practical guidance." |
|
) |
|
where_to_find_more_information: list[str] = Field( |
|
description="Links to online resources, articles, official documents, or industry reports where more information can be found." |
|
) |
|
actionable_steps: list[str] = Field( |
|
description="Clear instructions on how the user might directly contact key individuals or organizations from those projects, if they desire deeper insights." |
|
) |
|
rationale_for_suggestion: str = Field( |
|
description="Explain why this particular project is suggested." |
|
) |
|
|
|
class DocumentDetails(BaseModel): |
|
suggestion_list: list[SuggestionItem] = Field( |
|
description="List of suggestions." |
|
) |
|
summary: str = Field( |
|
description="Providing a high level context." |
|
) |
|
|
|
RELATED_RESOURCES_SYSTEM_PROMPT = """ |
|
You are an expert project analyst tasked with recommending highly relevant past or existing projects as references for a user's described project. |
|
|
|
Your goal is to always provide at least **three detailed and insightful recommendations**, strictly adhering to the following guidelines: |
|
|
|
- **Primary Suggestions (at least 2):** |
|
- Must be **real and verifiable past or existing projects**—no hypothetical, fictional, or speculative examples. |
|
- Include exhaustive detail: |
|
- **Project Name:** Clearly state the official name. |
|
- **Project Description:** Concise yet comprehensive description of objectives, scale, timeline, industry, location, and outcomes. |
|
- **Rationale for Suggestion:** Explicitly highlight similarities in technology, objectives, operational processes, geographical, economic, or cultural aspects. |
|
- **Risks and Challenges Faced:** Explicitly list major challenges and clearly explain how each was overcome or mitigated. |
|
- **Success Metrics:** Measurable outcomes such as economic impact, production volume, customer satisfaction, timeline adherence, or technology breakthroughs. |
|
- **Where to Find More Information:** Direct and authoritative links (official websites, reputable publications, scholarly articles). |
|
- **Actionable Steps:** Clearly specify roles, names, and robust communication channels (emails, LinkedIn, organizational contacts). |
|
|
|
- **Secondary Suggestions (optional but encouraged, at least 1):** |
|
- Must also be real projects but may contain fewer details. |
|
- Mark explicitly as secondary suggestions. |
|
|
|
**Priority for Relevance:** |
|
- Emphasize geographical or cultural proximity first, but clearly justify including geographically distant examples if necessary. |
|
- If geographically or culturally similar projects are limited, explicitly state this in the rationale. |
|
|
|
**Important:** Avoid any hypothetical, speculative, or fictional suggestions. Only include real, documented projects. |
|
|
|
Your recommendations should collectively provide the user with robust insights, actionable guidance, and practical contacts for successful execution. |
|
""" |
|
|
|
@dataclass |
|
class RelatedResources: |
|
""" |
|
Identify similar past or existing projects that can be used as a reference for the current project. |
|
""" |
|
system_prompt: str |
|
user_prompt: str |
|
response: dict |
|
metadata: dict |
|
markdown: str |
|
|
|
@classmethod |
|
def execute(cls, llm: LLM, user_prompt: str) -> 'RelatedResources': |
|
""" |
|
Invoke LLM with the project description. |
|
""" |
|
if not isinstance(llm, LLM): |
|
raise ValueError("Invalid LLM instance.") |
|
if not isinstance(user_prompt, str): |
|
raise ValueError("Invalid user_prompt.") |
|
|
|
logger.debug(f"User Prompt:\n{user_prompt}") |
|
|
|
system_prompt = RELATED_RESOURCES_SYSTEM_PROMPT.strip() |
|
|
|
chat_message_list = [ |
|
ChatMessage( |
|
role=MessageRole.SYSTEM, |
|
content=system_prompt, |
|
), |
|
ChatMessage( |
|
role=MessageRole.USER, |
|
content=user_prompt, |
|
) |
|
] |
|
|
|
sllm = llm.as_structured_llm(DocumentDetails) |
|
start_time = time.perf_counter() |
|
try: |
|
chat_response = sllm.chat(chat_message_list) |
|
except Exception as e: |
|
logger.debug(f"LLM chat interaction failed: {e}") |
|
logger.error("LLM chat interaction failed.", exc_info=True) |
|
raise ValueError("LLM chat interaction failed.") from e |
|
|
|
end_time = time.perf_counter() |
|
duration = int(ceil(end_time - start_time)) |
|
response_byte_count = len(chat_response.message.content.encode('utf-8')) |
|
logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}") |
|
|
|
json_response = chat_response.raw.model_dump() |
|
|
|
metadata = dict(llm.metadata) |
|
metadata["llm_classname"] = llm.class_name() |
|
metadata["duration"] = duration |
|
metadata["response_byte_count"] = response_byte_count |
|
|
|
markdown = cls.convert_to_markdown(chat_response.raw) |
|
|
|
result = RelatedResources( |
|
system_prompt=system_prompt, |
|
user_prompt=user_prompt, |
|
response=json_response, |
|
metadata=metadata, |
|
markdown=markdown |
|
) |
|
return result |
|
|
|
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict: |
|
d = self.response.copy() |
|
if include_metadata: |
|
d['metadata'] = self.metadata |
|
if include_system_prompt: |
|
d['system_prompt'] = self.system_prompt |
|
if include_user_prompt: |
|
d['user_prompt'] = self.user_prompt |
|
return d |
|
|
|
def save_raw(self, file_path: str) -> None: |
|
with open(file_path, 'w') as f: |
|
f.write(json.dumps(self.to_dict(), indent=2)) |
|
|
|
@staticmethod |
|
def convert_to_markdown(document_details: DocumentDetails) -> str: |
|
""" |
|
Convert the raw document details to markdown. |
|
""" |
|
rows = [] |
|
|
|
for item_index, suggestion in enumerate(document_details.suggestion_list, start=1): |
|
rows.append(f"## Suggestion {item_index} - {suggestion.project_name}\n") |
|
rows.append(suggestion.project_description) |
|
|
|
success_metrics = "\n".join(suggestion.success_metrics) |
|
rows.append(f"\n### Success Metrics\n\n{success_metrics}") |
|
|
|
risks_and_challenges_faced = "\n".join(suggestion.risks_and_challenges_faced) |
|
rows.append(f"\n### Risks and Challenges Faced\n\n{risks_and_challenges_faced}") |
|
|
|
where_to_find_more_information = "\n".join(suggestion.where_to_find_more_information) |
|
rows.append(f"\n### Where to Find More Information\n\n{where_to_find_more_information}") |
|
|
|
actionable_steps = "\n".join(suggestion.actionable_steps) |
|
rows.append(f"\n### Actionable Steps\n\n{actionable_steps}") |
|
|
|
rows.append(f"\n### Rationale for Suggestion\n\n{suggestion.rationale_for_suggestion}") |
|
|
|
rows.append(f"\n## Summary\n\n{document_details.summary}") |
|
return "\n".join(rows) |
|
|
|
def save_markdown(self, output_file_path: str): |
|
with open(output_file_path, 'w', encoding='utf-8') as out_f: |
|
out_f.write(self.markdown) |
|
|
|
if __name__ == "__main__": |
|
from src.llm_factory import get_llm |
|
from src.plan.find_plan_prompt import find_plan_prompt |
|
|
|
llm = get_llm("ollama-llama3.1") |
|
|
|
plan_prompt = find_plan_prompt("de626417-4871-4acc-899d-2c41fd148807") |
|
query = ( |
|
f"{plan_prompt}\n\n" |
|
"Today's date:\n2025-Feb-27\n\n" |
|
"Project start ASAP" |
|
) |
|
print(f"Query: {query}") |
|
|
|
result = RelatedResources.execute(llm, query) |
|
json_response = result.to_dict(include_system_prompt=False, include_user_prompt=False) |
|
print("\n\nResponse:") |
|
print(json.dumps(json_response, indent=2)) |
|
|
|
print(f"\n\nMarkdown:\n{result.markdown}") |
|
|