|
""" |
|
Exercise the prompt caching mechanism. |
|
|
|
The CSV file is one message. |
|
The query is another message. |
|
|
|
The server responds with a 'usage' dictionary containing stats. |
|
CompletionUsage(completion_tokens=120, prompt_tokens=1639, total_tokens=1759, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetails(audio_tokens=None, cached_tokens=0), prompt_cache_hit_tokens=0, prompt_cache_miss_tokens=1639) |
|
CompletionUsage(completion_tokens=489, prompt_tokens=1631, total_tokens=2120, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetails(audio_tokens=None, cached_tokens=1600), prompt_cache_hit_tokens=1600, prompt_cache_miss_tokens=31) |
|
CompletionUsage(completion_tokens=59, prompt_tokens=1630, total_tokens=1689, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetails(audio_tokens=None, cached_tokens=1600), prompt_cache_hit_tokens=1600, prompt_cache_miss_tokens=30) |
|
CompletionUsage(completion_tokens=1224, prompt_tokens=1632, total_tokens=2856, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetails(audio_tokens=None, cached_tokens=1600), prompt_cache_hit_tokens=1600, prompt_cache_miss_tokens=32) |
|
|
|
The first row, is a full cache miss. |
|
The following requests are cache hits. |
|
""" |
|
import os |
|
from src.llm_factory import get_llm |
|
from llama_index.core.llms import ChatMessage |
|
|
|
llm = get_llm("deepseek-chat") |
|
|
|
path_csv = os.path.join(os.path.dirname(__file__), '..', 'wbs_table_for_cost_estimation', 'test_data', 'wbs_table.csv') |
|
with open(path_csv, 'r') as f: |
|
data_csv = f.read() |
|
|
|
messages_static = [ |
|
ChatMessage( |
|
role="system", content="You are a CSV file expert. I have a CSV file that I need help with." |
|
), |
|
ChatMessage(role="user", content=data_csv) |
|
] |
|
|
|
def run_query(query: str): |
|
messages = messages_static + [ |
|
ChatMessage(role="user", content=query) |
|
] |
|
chat_response = llm.chat(messages) |
|
|
|
print(f"\n\nResponse str\n{chat_response}") |
|
print(f"\n\nResponse repr\n{chat_response.__repr__()}") |
|
print(f"\n\nUSAGE:\n{chat_response.raw.usage}") |
|
|
|
run_query("I need to know the number of rows and columns in this CSV file.") |
|
run_query("What kind of data is this?") |
|
run_query("What are the column names?") |
|
run_query("Extract all the uuids.") |
|
|