|
""" |
|
Enrich the team members with what kind of equipment and facilities they need for the task. |
|
|
|
PROMPT> python -m src.team.enrich_team_members_with_environment_info |
|
""" |
|
import os |
|
import json |
|
import time |
|
import logging |
|
from math import ceil |
|
from dataclasses import dataclass |
|
from typing import List, Optional |
|
from pydantic import BaseModel, Field |
|
from llama_index.core.llms import ChatMessage, MessageRole |
|
from llama_index.core.llms.llm import LLM |
|
from src.format_json_for_use_in_query import format_json_for_use_in_query |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class TeamMember(BaseModel): |
|
"""A human with domain knowledge.""" |
|
id: int = Field( |
|
description="A unique id for the job_category." |
|
) |
|
equipment_needs: str = Field( |
|
description="What expensive resources are needed for the daily job." |
|
) |
|
facility_needs: str = Field( |
|
description="What facilities are needed for the daily job." |
|
) |
|
|
|
class DocumentDetails(BaseModel): |
|
team_members: list[TeamMember] = Field( |
|
description="The experts with domain knowledge about the problem." |
|
) |
|
|
|
ENRICH_TEAM_MEMBERS_ENVIRONMENT_INFO_SYSTEM_PROMPT = """ |
|
You are an expert at determining what equipment and facilities are needed for different job roles given a project description. |
|
|
|
For each team member provided, identify the specific equipment and facilities they require to effectively perform their daily tasks within the context of the given project description. Provide concise but descriptive answers. |
|
""" |
|
|
|
@dataclass |
|
class EnrichTeamMembersWithEnvironmentInfo: |
|
""" |
|
Enrich each team member with more info. |
|
""" |
|
system_prompt: str |
|
user_prompt: str |
|
response: dict |
|
metadata: dict |
|
team_member_list: list[dict] |
|
|
|
@classmethod |
|
def format_query(cls, job_description: str, team_member_list: list[dict]) -> str: |
|
if not isinstance(job_description, str): |
|
raise ValueError("Invalid job_description.") |
|
if not isinstance(team_member_list, list): |
|
raise ValueError("Invalid team_member_list.") |
|
|
|
query = ( |
|
f"Project description:\n{job_description}\n\n" |
|
f"Here is the list of team members that needs to be enriched:\n{format_json_for_use_in_query(team_member_list)}" |
|
) |
|
return query |
|
|
|
@classmethod |
|
def execute(cls, llm: LLM, user_prompt: str, team_member_list: list[dict]) -> 'EnrichTeamMembersWithEnvironmentInfo': |
|
""" |
|
Invoke LLM with each team member. |
|
""" |
|
if not isinstance(llm, LLM): |
|
raise ValueError("Invalid LLM instance.") |
|
if not isinstance(user_prompt, str): |
|
raise ValueError("Invalid user_prompt.") |
|
if not isinstance(team_member_list, list): |
|
raise ValueError("Invalid team_member_list.") |
|
|
|
logger.debug(f"User Prompt:\n{user_prompt}") |
|
|
|
system_prompt = ENRICH_TEAM_MEMBERS_ENVIRONMENT_INFO_SYSTEM_PROMPT.strip() |
|
|
|
chat_message_list = [ |
|
ChatMessage( |
|
role=MessageRole.SYSTEM, |
|
content=system_prompt, |
|
), |
|
ChatMessage( |
|
role=MessageRole.USER, |
|
content=user_prompt, |
|
) |
|
] |
|
|
|
sllm = llm.as_structured_llm(DocumentDetails) |
|
start_time = time.perf_counter() |
|
try: |
|
chat_response = sllm.chat(chat_message_list) |
|
except Exception as e: |
|
logger.debug(f"LLM chat interaction failed: {e}") |
|
logger.error("LLM chat interaction failed.", exc_info=True) |
|
raise ValueError("LLM chat interaction failed.") from e |
|
|
|
end_time = time.perf_counter() |
|
duration = int(ceil(end_time - start_time)) |
|
response_byte_count = len(chat_response.message.content.encode('utf-8')) |
|
logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}") |
|
|
|
json_response = chat_response.raw.model_dump() |
|
|
|
team_member_list_enriched = cls.cleanup_enriched_team_members_with_environment_info_and_merge_with_team_members(chat_response.raw, team_member_list) |
|
|
|
metadata = dict(llm.metadata) |
|
metadata["llm_classname"] = llm.class_name() |
|
metadata["duration"] = duration |
|
metadata["response_byte_count"] = response_byte_count |
|
|
|
result = EnrichTeamMembersWithEnvironmentInfo( |
|
system_prompt=system_prompt, |
|
user_prompt=user_prompt, |
|
response=json_response, |
|
metadata=metadata, |
|
team_member_list=team_member_list_enriched, |
|
) |
|
return result |
|
|
|
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict: |
|
d = self.response.copy() |
|
if include_metadata: |
|
d['metadata'] = self.metadata |
|
if include_system_prompt: |
|
d['system_prompt'] = self.system_prompt |
|
if include_user_prompt: |
|
d['user_prompt'] = self.user_prompt |
|
return d |
|
|
|
def cleanup_enriched_team_members_with_environment_info_and_merge_with_team_members(document_details: DocumentDetails, team_member_list: list[dict]) -> list: |
|
result_team_member_list = team_member_list.copy() |
|
enriched_team_member_list = document_details.team_members |
|
id_to_enriched_team_member = {item.id: item for item in enriched_team_member_list} |
|
for team_member_index, team_member in enumerate(result_team_member_list): |
|
if not 'id' in team_member: |
|
logger.warning(f"Team member #{team_member_index} does not have an id") |
|
continue |
|
id = team_member['id'] |
|
enriched_team_member = id_to_enriched_team_member.get(id) |
|
if enriched_team_member: |
|
team_member['equipment_needs'] = enriched_team_member.equipment_needs |
|
team_member['facility_needs'] = enriched_team_member.facility_needs |
|
return result_team_member_list |
|
|
|
if __name__ == "__main__": |
|
from src.llm_factory import get_llm |
|
|
|
llm = get_llm("ollama-llama3.1") |
|
|
|
|
|
job_description = "Establish a new police station in a high crime area." |
|
|
|
team_member_list = [ |
|
{ |
|
"id": 1, |
|
"category": "Law Enforcement", |
|
"explanation": "Police officers and detectives are essential for patrolling, investigation, and maintaining public safety." |
|
}, |
|
{ |
|
"id": 2, |
|
"category": "Administration", |
|
"explanation": "Administrative staff manage paperwork, scheduling, and coordination of police activities." |
|
}, |
|
{ |
|
"id": 3, |
|
"category": "Forensics", |
|
"explanation": "Forensic experts analyze crime scene evidence to support investigations." |
|
}, |
|
{ |
|
"id": 4, |
|
"category": "Community Relations", |
|
"explanation": "Officers or liaisons engage with the community to build trust and cooperation." |
|
} |
|
] |
|
|
|
query = EnrichTeamMembersWithEnvironmentInfo.format_query(job_description, team_member_list) |
|
print(f"Query:\n{query}\n\n") |
|
|
|
enrich_team_members_with_environment_info = EnrichTeamMembersWithEnvironmentInfo.execute(llm, query, team_member_list) |
|
json_response = enrich_team_members_with_environment_info.to_dict(include_system_prompt=False, include_user_prompt=False) |
|
print(json.dumps(json_response, indent=2)) |
|
|
|
print("\n\nTeam members:") |
|
json_team = enrich_team_members_with_environment_info.team_member_list |
|
print(json.dumps(json_team, indent=2)) |
|
|