PlanExe / src /team /review_team.py
Simon Strandgaard
Snapshot of PlanExe commit 5012c8a07355571673d80b3e1f60b5fc0fc1a715
f0808c8
"""
Review the team.
PROMPT> python -m src.team.review_team
"""
import os
import json
import time
import logging
from math import ceil
from dataclasses import dataclass
from pydantic import BaseModel, Field
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.llms.llm import LLM
from src.format_json_for_use_in_query import format_json_for_use_in_query
logger = logging.getLogger(__name__)
class ReviewItem(BaseModel):
issue: str = Field(
description="A brief title or name for the omission/improvement."
)
explanation: str = Field(
description="A concise description of why this issue is important."
)
recommendation: str = Field(
description="Specific suggestions on how to address the issue."
)
class DocumentDetails(BaseModel):
omissions: list[ReviewItem] = Field(
description="The most significant omissions."
)
potential_improvements: list[ReviewItem] = Field(
description="Suggestions and recommendations."
)
REVIEW_TEAM_SYSTEM_PROMPT = """
You are an expert in designing and evaluating team structures for projects of all scales—from personal or trivial endeavors to large, complex initiatives. Your task is to review a team document that includes a project plan, detailed team roles, and sections on omissions and potential improvements.
In your analysis, please:
1. **Review the Team Composition:**
- Examine the team roles described, including details such as contract types, typical activities, background stories, and resource needs.
- Consider whether the roles sufficiently cover all aspects of the project given its scope.
2. **Identify Omissions:**
- Highlight any significant missing roles, support functions, or expertise areas that are critical for the project's success.
- **Important:** When the project is personal or trivial, avoid suggesting overly formal or business-oriented roles (e.g., Marketing Specialist, Legal Advisor, Technical Support Specialist). Instead, suggest simpler or integrative adjustments suitable for a personal context.
3. **Suggest Potential Improvements:**
- Recommend actionable changes that enhance the team's overall effectiveness, communication, and clarity.
- Focus on clarifying responsibilities and reducing overlap.
- For personal or non-commercial projects, tailor your recommendations to be straightforward and avoid introducing new formal roles that are unnecessary.
4. **Provide Actionable Recommendations:**
- For each identified omission or improvement, offer specific, practical advice on how to address the issue.
- Ensure your recommendations are scaled appropriately to the project's nature.
Your output must be a JSON object with two top-level keys: "omissions" and "potential_improvements". Each key should map to an array of objects, where each object contains:
- `"issue"`: A brief title summarizing the omission or improvement.
- `"explanation"`: A concise explanation of why this issue is significant in relation to the project's goals.
- `"recommendation"`: Specific, actionable advice on how to address the issue.
Ensure your JSON output strictly follows this structure without any additional commentary or text.
"""
@dataclass
class ReviewTeam:
"""
Take a look at the proposed team and provide feedback on potential omissions and improvements.
"""
system_prompt: str
user_prompt: str
response: dict
metadata: dict
@classmethod
def format_query(cls, job_description: str, team_document_markdown: str) -> str:
if not isinstance(job_description, str):
raise ValueError("Invalid job_description.")
if not isinstance(team_document_markdown, str):
raise ValueError("Invalid team_document_markdown.")
query = (
f"Project description:\n{job_description}\n\n"
f"Document with team members:\n{team_document_markdown}"
)
return query
@classmethod
def execute(cls, llm: LLM, user_prompt: str) -> 'ReviewTeam':
"""
Invoke LLM with the project description and team document to be reviewed.
"""
if not isinstance(llm, LLM):
raise ValueError("Invalid LLM instance.")
if not isinstance(user_prompt, str):
raise ValueError("Invalid user_prompt.")
logger.debug(f"User Prompt:\n{user_prompt}")
system_prompt = REVIEW_TEAM_SYSTEM_PROMPT.strip()
chat_message_list = [
ChatMessage(
role=MessageRole.SYSTEM,
content=system_prompt,
),
ChatMessage(
role=MessageRole.USER,
content=user_prompt,
)
]
sllm = llm.as_structured_llm(DocumentDetails)
start_time = time.perf_counter()
try:
chat_response = sllm.chat(chat_message_list)
except Exception as e:
logger.debug(f"LLM chat interaction failed: {e}")
logger.error("LLM chat interaction failed.", exc_info=True)
raise ValueError("LLM chat interaction failed.") from e
end_time = time.perf_counter()
duration = int(ceil(end_time - start_time))
response_byte_count = len(chat_response.message.content.encode('utf-8'))
logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}")
json_response = chat_response.raw.model_dump()
metadata = dict(llm.metadata)
metadata["llm_classname"] = llm.class_name()
metadata["duration"] = duration
metadata["response_byte_count"] = response_byte_count
result = ReviewTeam(
system_prompt=system_prompt,
user_prompt=user_prompt,
response=json_response,
metadata=metadata,
)
return result
def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict:
d = self.response.copy()
if include_metadata:
d['metadata'] = self.metadata
if include_system_prompt:
d['system_prompt'] = self.system_prompt
if include_user_prompt:
d['user_prompt'] = self.user_prompt
return d
if __name__ == "__main__":
from src.llm_factory import get_llm
llm = get_llm("ollama-llama3.1")
path = os.path.join(os.path.dirname(__file__), 'test_data', "solarfarm_team_without_review.md")
with open(path, 'r', encoding='utf-8') as f:
team_document_markdown = f.read()
job_description = "Establish a solar farm in Denmark."
query = ReviewTeam.format_query(job_description, team_document_markdown)
print(f"Query:\n{query}\n\n")
review_team = ReviewTeam.execute(llm, query)
json_response = review_team.to_dict(include_system_prompt=False, include_user_prompt=False)
print(json.dumps(json_response, indent=2))