""" Shorten the long consolidated assumptions to a shorter markdown document. PROMPT> python -m src.assume.shorten_markdown """ import os import json import time import logging from math import ceil from typing import Optional from dataclasses import dataclass from llama_index.core.llms.llm import LLM from llama_index.core.llms import ChatMessage, MessageRole from src.format_json_for_use_in_query import format_json_for_use_in_query from src.markdown_util.fix_bullet_lists import fix_bullet_lists from src.markdown_util.remove_bold_formatting import remove_bold_formatting logger = logging.getLogger(__name__) SHORTEN_MARKDOWN_SYSTEM_PROMPT = """ You are a transformer that shortens project planning Markdown documents. Your only task is to convert the input Markdown into a shorter version while preserving all topics and structure. Do not add any extra text or new information. Output must: - Be wrapped exactly in [START_MARKDOWN] and [END_MARKDOWN] (no text before or after). - Use only plain Markdown (no bold formatting). - Retain headings using only '#' and '##'. Convert any deeper levels to these. - Use bullet lists with a hyphen and a space. - Condense paragraphs, remove redundancy, and combine similar sections. - Preserve key details (assumptions, risks, recommendations) without summarizing or providing commentary. """ @dataclass class ShortenMarkdown: system_prompt: Optional[str] user_prompt: str response: str markdown: str metadata: dict @classmethod def execute(cls, llm: LLM, user_prompt: str) -> 'ShortenMarkdown': """ Invoke LLM with a long markdown document that is to be shortened. """ if not isinstance(llm, LLM): raise ValueError("Invalid LLM instance.") if not isinstance(user_prompt, str): raise ValueError("Invalid user_prompt.") user_prompt = user_prompt.strip() user_prompt = remove_bold_formatting(user_prompt) system_prompt = SHORTEN_MARKDOWN_SYSTEM_PROMPT.strip() chat_message_list = [ ChatMessage( role=MessageRole.SYSTEM, content=system_prompt, ), ChatMessage( role=MessageRole.USER, content=user_prompt, ) ] logger.debug(f"User Prompt:\n{user_prompt}") logger.debug("Starting LLM chat interaction.") start_time = time.perf_counter() chat_response = llm.chat(chat_message_list) end_time = time.perf_counter() duration = int(ceil(end_time - start_time)) response_byte_count = len(chat_response.message.content.encode('utf-8')) logger.info(f"LLM chat interaction completed in {duration} seconds. Response byte count: {response_byte_count}") metadata = dict(llm.metadata) metadata["llm_classname"] = llm.class_name() metadata["duration"] = duration metadata["response_byte_count"] = response_byte_count response_content = chat_response.message.content start_delimiter = "[START_MARKDOWN]" end_delimiter = "[END_MARKDOWN]" start_index = response_content.find(start_delimiter) end_index = response_content.find(end_delimiter) if start_index != -1 and end_index != -1: markdown_content = response_content[start_index + len(start_delimiter):end_index].strip() else: markdown_content = response_content # Use the entire content if delimiters are missing logger.warning("Output delimiters not found in LLM response.") markdown_content = fix_bullet_lists(markdown_content) markdown_content = remove_bold_formatting(markdown_content) json_response = {} json_response['response_content'] = response_content json_response['markdown'] = markdown_content result = ShortenMarkdown( system_prompt=system_prompt, user_prompt=user_prompt, response=json_response, markdown=markdown_content, metadata=metadata, ) logger.debug("ShortenMarkdown instance created successfully.") return result def to_dict(self, include_metadata=True, include_system_prompt=True, include_user_prompt=True) -> dict: d = self.response.copy() d['markdown'] = self.markdown if include_metadata: d['metadata'] = self.metadata if include_system_prompt: d['system_prompt'] = self.system_prompt if include_user_prompt: d['user_prompt'] = self.user_prompt return d def save_raw(self, file_path: str) -> None: with open(file_path, 'w') as f: f.write(json.dumps(self.to_dict(), indent=2)) def save_markdown(self, file_path: str) -> None: with open(file_path, "w", encoding="utf-8") as f: f.write(self.markdown) if __name__ == "__main__": from src.llm_factory import get_llm # path = os.path.join(os.path.dirname(__file__), 'test_data', 'shorten_markdown1', 'currency_strategy.md') # path = os.path.join(os.path.dirname(__file__), 'test_data', 'shorten_markdown1', 'identify_risks.md') path = os.path.join(os.path.dirname(__file__), 'test_data', 'shorten_markdown1', 'physical_locations.md') with open(path, 'r', encoding='utf-8') as f: the_markdown = f.read() model_name = "ollama-llama3.1" # model_name = "ollama-qwen2.5-coder" llm = get_llm(model_name) query = the_markdown input_bytes_count = len(query.encode('utf-8')) print(f"Query: {query}") result = ShortenMarkdown.execute(llm, query) print("\nResponse:") json_response = result.to_dict(include_system_prompt=False, include_user_prompt=False) print(json.dumps(json_response, indent=2)) print(f"\n\nMarkdown:\n{result.markdown}") output_bytes_count = len(result.markdown.encode('utf-8')) print(f"\n\nInput bytes count: {input_bytes_count}") print(f"Output bytes count: {output_bytes_count}") bytes_saved = input_bytes_count - output_bytes_count print(f"Bytes saved: {bytes_saved}") print(f"Percentage saved: {bytes_saved / input_bytes_count * 100:.2f}%")