import logging import os import json from enum import Enum from dataclasses import dataclass from dotenv import dotenv_values from typing import Optional, Any, Dict from llama_index.core.llms.llm import LLM from llama_index.llms.mistralai import MistralAI from llama_index.llms.ollama import Ollama from llama_index.llms.openai_like import OpenAILike from llama_index.llms.openai import OpenAI from llama_index.llms.together import TogetherLLM from llama_index.llms.groq import Groq from llama_index.llms.lmstudio import LMStudio from llama_index.llms.openrouter import OpenRouter from src.llm_util.ollama_info import OllamaInfo # You can disable this if you don't want to send app info to OpenRouter. SEND_APP_INFO_TO_OPENROUTER = True logger = logging.getLogger(__name__) __all__ = ["get_llm", "LLMInfo"] # Load .env values and merge with system environment variables. # This one-liner makes sure any secret injected by Hugging Face, like OPENROUTER_API_KEY # overrides what’s in your .env file. _dotenv_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".env")) _dotenv_dict = {**dotenv_values(dotenv_path=_dotenv_path), **os.environ} _config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "llm_config.json")) def load_config(config_path: str) -> Dict[str, Any]: """Loads the configuration from a JSON file.""" try: with open(config_path, "r") as f: return json.load(f) except FileNotFoundError: logger.error(f"Warning: llm_config.json not found at {config_path}. Using default settings.") return {} except json.JSONDecodeError as e: raise ValueError(f"Error decoding JSON from {config_path}: {e}") _llm_configs = load_config(_config_path) def substitute_env_vars(config: Dict[str, Any], env_vars: Dict[str, str]) -> Dict[str, Any]: """Recursively substitutes environment variables in the configuration.""" def replace_value(value: Any) -> Any: if isinstance(value, str) and value.startswith("${") and value.endswith("}"): var_name = value[2:-1] # Extract variable name if var_name in env_vars: return env_vars[var_name] else: print(f"Warning: Environment variable '{var_name}' not found.") return value # Or raise an error if you prefer strict enforcement return value def process_item(item): if isinstance(item, dict): return {k: process_item(v) for k, v in item.items()} elif isinstance(item, list): return [process_item(i) for i in item] else: return replace_value(item) return process_item(config) class OllamaStatus(str, Enum): no_ollama_models = 'no ollama models in the llm_config.json file' ollama_not_running = 'ollama is NOT running' mixed = 'Mixed. Some ollama models are running, but some are NOT running.' ollama_running = 'Ollama is running' @dataclass class LLMConfigItem: id: str label: str @dataclass class LLMInfo: llm_config_items: list[LLMConfigItem] ollama_status: OllamaStatus error_message_list: list[str] @classmethod def obtain_info(cls) -> 'LLMInfo': """ Returns a list of available LLM names. """ # Probe each Ollama service endpoint just once. error_message_list = [] ollama_info_per_host = {} count_running = 0 count_not_running = 0 for config_id, config in _llm_configs.items(): if config.get("class") != "Ollama": continue arguments = config.get("arguments", {}) model = arguments.get("model", None) base_url = arguments.get("base_url", None) if base_url in ollama_info_per_host: # Already got info for this host. No need to get it again. continue ollama_info = OllamaInfo.obtain_info(base_url=base_url) ollama_info_per_host[base_url] = ollama_info running_on = "localhost" if base_url is None else base_url if ollama_info.is_running: count_running += 1 else: count_not_running += 1 if ollama_info.is_running == False: print(f"Ollama is not running on {running_on}. Please start the Ollama service, in order to use the models via Ollama.") elif ollama_info.error_message: print(f"Error message: {ollama_info.error_message}") error_message_list.append(ollama_info.error_message) # Get info about the each LLM config item that is using Ollama. llm_config_items = [] for config_id, config in _llm_configs.items(): if config.get("class") != "Ollama": item = LLMConfigItem(id=config_id, label=config_id) llm_config_items.append(item) continue arguments = config.get("arguments", {}) model = arguments.get("model", None) base_url = arguments.get("base_url", None) ollama_info = ollama_info_per_host[base_url] is_model_available = ollama_info.is_model_available(model) if is_model_available: label = config_id else: label = f"{config_id} ❌ unavailable" if ollama_info.is_running and not is_model_available: error_message = f"Problem with config `\"{config_id}\"`: The model `\"{model}\"` is not available in Ollama. Compare model names in `llm_config.json` with the names available in Ollama." error_message_list.append(error_message) item = LLMConfigItem(id=config_id, label=label) llm_config_items.append(item) if count_not_running == 0 and count_running > 0: ollama_status = OllamaStatus.ollama_running elif count_not_running > 0 and count_running == 0: ollama_status = OllamaStatus.ollama_not_running elif count_not_running > 0 and count_running > 0: ollama_status = OllamaStatus.mixed else: ollama_status = OllamaStatus.no_ollama_models return LLMInfo( llm_config_items=llm_config_items, ollama_status=ollama_status, error_message_list=error_message_list, ) def get_llm(llm_name: Optional[str] = None, **kwargs: Any) -> LLM: """ Returns an LLM instance based on the config.json file or a fallback default. :param llm_name: The name/key of the LLM to instantiate. If None, falls back to DEFAULT_LLM in .env (or 'ollama-llama3.1'). :param kwargs: Additional keyword arguments to override default model parameters. :return: An instance of a LlamaIndex LLM class. """ if not llm_name: llm_name = _dotenv_dict.get("DEFAULT_LLM", "ollama-llama3.1") if llm_name not in _llm_configs: # If llm_name doesn't exits in _llm_configs, then we go through default settings logger.error(f"LLM '{llm_name}' not found in config.json. Falling back to hardcoded defaults.") raise ValueError(f"Unsupported LLM name: {llm_name}") config = _llm_configs[llm_name] class_name = config.get("class") arguments = config.get("arguments", {}) # Substitute environment variables arguments = substitute_env_vars(arguments, _dotenv_dict) # Override with any kwargs passed to get_llm() arguments.update(kwargs) if class_name == "OpenRouter" and SEND_APP_INFO_TO_OPENROUTER: # https://openrouter.ai/rankings # https://openrouter.ai/docs/api-reference/overview#headers arguments_extra = { "additional_kwargs": { "extra_headers": { "HTTP-Referer": "https://github.com/neoneye/PlanExe", "X-Title": "PlanExe" } } } arguments.update(arguments_extra) # Dynamically instantiate the class try: llm_class = globals()[class_name] # Get class from global scope return llm_class(**arguments) except KeyError: raise ValueError(f"Invalid LLM class name in config.json: {class_name}") except TypeError as e: raise ValueError(f"Error instantiating {class_name} with arguments: {e}") if __name__ == '__main__': try: llm = get_llm(llm_name="ollama-llama3.1") print(f"Successfully loaded LLM: {llm.__class__.__name__}") print(llm.complete("Hello, how are you?")) except ValueError as e: print(f"Error: {e}")