Spaces:
Sleeping
Sleeping
import spaces | |
import json | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer | |
model_name = "Salesforce/xLAM-1b-fc-r" | |
title = f"Eval Model: {model_name}" | |
description = """""" | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set random seed for reproducibility | |
torch.random.manual_seed(0) | |
# Task and format instructions | |
task_instruction = """ | |
Based on the previous context and API request history, generate an API request or a response as an AI assistant.""".strip() | |
format_instruction = """ | |
The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make | |
tool_calls an empty list "[]". | |
``` | |
{"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]} | |
``` | |
""".strip() | |
# Example tools and query | |
example_tools = json.dumps([ | |
{ | |
"name": "get_weather", | |
"description": "Get the current weather for a location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, New York" | |
}, | |
"unit": { | |
"type": "string", | |
"enum": ["celsius", "fahrenheit"], | |
"description": "The unit of temperature to return" | |
} | |
}, | |
"required": ["location"] | |
} | |
}, | |
{ | |
"name": "search", | |
"description": "Search for information on the internet", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"query": { | |
"type": "string", | |
"description": "The search query, e.g. 'latest news on AI'" | |
} | |
}, | |
"required": ["query"] | |
} | |
} | |
], indent=2) | |
example_query = "What's the weather like in New York in fahrenheit?" | |
def convert_to_xlam_tool(tools): | |
if isinstance(tools, dict): | |
return { | |
"name": tools["name"], | |
"description": tools["description"], | |
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()} | |
} | |
elif isinstance(tools, list): | |
return [convert_to_xlam_tool(tool) for tool in tools] | |
else: | |
return tools | |
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str): | |
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n" | |
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n" | |
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n" | |
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n" | |
return prompt | |
def generate_response(tools_input, query): | |
try: | |
tools = json.loads(tools_input) | |
except json.JSONDecodeError: | |
return "Error: Invalid JSON format for tools input." | |
xlam_format_tools = convert_to_xlam_tool(tools) | |
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query) | |
messages = [ | |
{'role': 'user', 'content': content} | |
] | |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) | |
agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
return agent_action | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
tools_input = gr.Code( | |
label="Available Tools (JSON format)", | |
lines=20, | |
value=example_tools, | |
language='json' | |
) | |
query_input = gr.Textbox( | |
label="User Query", | |
lines=2, | |
value=example_query | |
) | |
submit_button = gr.Button("Generate Response") | |
with gr.Column(): | |
output = gr.Code(label="🎬 xLam :", lines=10, language="json") | |
submit_button.click(generate_response, inputs=[tools_input, query_input], outputs=output) | |
if __name__ == "__main__": | |
demo.launch() |