Model_Test / app.py
Tonic's picture
Update app.py
e11a899 verified
raw
history blame
5.53 kB
import spaces
import json
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_name = "Salesforce/xLAM-7b-r"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set random seed for reproducibility
torch.random.manual_seed(0)
# Task and format instructions
task_instruction = """
Based on the previous context and API request history, generate an API request or a response as an AI assistant.""".strip()
format_instruction = """
The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make
tool_calls an empty list "[]".
```
{"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}
```
""".strip()
def convert_to_xlam_tool(tools):
if isinstance(tools, dict):
return {
"name": tools["name"],
"description": tools["description"],
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
}
elif isinstance(tools, list):
return [convert_to_xlam_tool(tool) for tool in tools]
else:
return tools
def build_conversation_history_prompt(conversation_history: str):
parsed_history = []
for step_data in conversation_history:
parsed_history.append({
"step_id": step_data["step_id"],
"thought": step_data["thought"],
"tool_calls": step_data["tool_calls"],
"next_observation": step_data["next_observation"],
"user_input": step_data['user_input']
})
history_string = json.dumps(parsed_history)
return f"\n[BEGIN OF HISTORY STEPS]\n{history_string}\n[END OF HISTORY STEPS]\n"
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n"
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
if len(conversation_history) > 0:
prompt += build_conversation_history_prompt(conversation_history)
return prompt
@spaces.GPU
def generate_response(tools_input, query):
try:
tools = json.loads(tools_input)
except json.JSONDecodeError:
return "Error: Invalid JSON format for tools input."
xlam_format_tools = convert_to_xlam_tool(tools)
conversation_history = []
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)
messages = [
{'role': 'user', 'content': content}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
return agent_action
# Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(
label="Available Tools (JSON format)",
lines=10,
value=json.dumps([
{
"name": "get_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, New York"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature to return"
}
},
"required": ["location"]
}
},
{
"name": "search",
"description": "Search for information on the internet",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query, e.g. 'latest news on AI'"
}
},
"required": ["query"]
}
}
], indent=2)
),
gr.Textbox(label="User Query", lines=2, value="What's the weather like in New York in fahrenheit?")
],
outputs=gr.Textbox(label="Generated Response", lines=10),
title="xLAM-7b-r API Request Generator",
description="Enter available tools in JSON format and a user query to generate an API request or response.",
)
if __name__ == "__main__":
iface.launch()