nerozhao commited on
Commit
ef39ed8
·
verified ·
1 Parent(s): 6697659

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -15
app.py CHANGED
@@ -4,15 +4,11 @@ import torch
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
- title = """# 🙋🏻‍♂️ Welcome to Tonic's Salesforce/Xlam-7B-r"""
8
- description = """
9
- 🎬 Large Action Models (LAMs) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.Check our the Salesforce/xLAM models : [🤗 xLAM-1b-fc-r](https://huggingface.co/Salesforce/xLAM-1b-fc-r) | [🤗 xLAM-1b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-1b-fc-r-gguf) [🤗 xLAM-7b-fc-r](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [🤗 xLAM-7b-fc-r-GGUF](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) [🤗 xLAM-7b-r ](https://huggingface.co/Salesforce/xLAM-7b-r) | [🤗 xLAM-8x7b-r](https://huggingface.co/Salesforce/xLAM-8x7b-r) [🤗 xLAM-8x22b-r](https://huggingface.co/Salesforce/xLAM-8x22b-r) |
10
- ### Join us :
11
- 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
12
- """
13
 
14
  # Load model and tokenizer
15
- model_name = "Salesforce/xLAM-7b-fc-r"
16
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
17
  tokenizer = AutoTokenizer.from_pretrained(model_name)
18
 
@@ -133,14 +129,6 @@ with gr.Blocks() as demo:
133
  output = gr.Code(label="🎬 xLam :", lines=10, language="json")
134
 
135
  submit_button.click(generate_response, inputs=[tools_input, query_input], outputs=output)
136
-
137
- gr.Examples(
138
- examples=[
139
- [example_tools, "What's the weather like in San Francisco in celsius?"],
140
- [example_tools, "Search for the latest news on artificial intelligence"],
141
- ],
142
- inputs=[tools_input, query_input],
143
- )
144
 
145
  if __name__ == "__main__":
146
  demo.launch()
 
4
  import gradio as gr
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
+ title = """"""
8
+ description = """"""
 
 
 
 
9
 
10
  # Load model and tokenizer
11
+ model_name = "Salesforce/xLAM-8x7b-r"
12
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
 
 
129
  output = gr.Code(label="🎬 xLam :", lines=10, language="json")
130
 
131
  submit_button.click(generate_response, inputs=[tools_input, query_input], outputs=output)
 
 
 
 
 
 
 
 
132
 
133
  if __name__ == "__main__":
134
  demo.launch()