net2asif commited on
Commit
323a8f6
·
verified ·
1 Parent(s): 2739840

Upload ai_app.py

Browse files
Files changed (1) hide show
  1. ai_app.py +243 -0
ai_app.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """ai_app.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1wUztAR4EdQUL3vkpM3Is-ps0TEocClry
8
+ """
9
+
10
+ !pip install langchain openai qdrant-client gradio pandas tiktoken -U langchain-community
11
+
12
+ from google.colab import userdata
13
+ openai_api_key=userdata.get('openai_api_key')
14
+
15
+ import gradio as gr
16
+ import pandas as pd
17
+ from langchain.document_loaders.csv_loader import CSVLoader
18
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
19
+ from langchain.embeddings import OpenAIEmbeddings
20
+ from langchain.vectorstores import Qdrant
21
+ from langchain.chains import VectorDBQA
22
+ from langchain.llms import OpenAI
23
+
24
+ qdrant_url=userdata.get('Qdrant')
25
+ qdrant_api_key=userdata.get('qdrant_api_key')
26
+ openai_api_key=userdata.get('openai_api_key')
27
+ # groq_api_key=userdata.get('GROQ_API_KEY')
28
+
29
+ #csv loader
30
+ loader = CSVLoader(file_path='data.csv')
31
+ data=loader.load()
32
+
33
+ data[:2]
34
+
35
+ len(data)
36
+
37
+ #split the documnts
38
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
39
+ texts = text_splitter.split_documents(data)
40
+
41
+ len(texts)
42
+
43
+ #embeding
44
+ embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
45
+
46
+ #import quantization
47
+
48
+ from langchain.vectorstores import Qdrant
49
+ from qdrant_client import QdrantClient, models
50
+
51
+ from langchain.vectorstores import Qdrant
52
+
53
+ #using qudadrant vector database
54
+ from qdrant_client import QdrantClient, models
55
+ qdrant = Qdrant.from_documents(
56
+ texts,
57
+ embeding,
58
+ url=qdrant_url,
59
+ prefer_grpc=True,
60
+ api_key=qdrant_api_key,
61
+ collection_name="llm_app",
62
+ quantization_config=models.BinaryQuantization(
63
+ binary=models.BinaryQuantizationConfig(
64
+ always_ram=True,
65
+ )
66
+ )
67
+ )
68
+
69
+ #qdrant client
70
+ qdrant_client = QdrantClient(
71
+ url=qdrant_url,
72
+ prefer_grpc=True,
73
+ api_key=qdrant_api_key,
74
+ )
75
+
76
+ from re import search
77
+ #retriver
78
+ retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2})
79
+
80
+ #search query
81
+ query="show me a best darmatology doctor in peshawar "
82
+ docs=retriver.get_relevant_documents(query)
83
+
84
+ #write a code for prety print
85
+ for i in docs:
86
+ print(i.page_content)
87
+
88
+ docs[0].metadata.items()
89
+
90
+ from langchain import PromptTemplate
91
+
92
+ prompt = PromptTemplate(
93
+ template="""
94
+ # Your Role
95
+ You are a highly skilled AI specialized in healthcare and medical information retrieval. Your expertise lies in understanding the medical needs of patients and accurately matching them with the most suitable healthcare professionals based on the given context.
96
+
97
+ # Instruction
98
+ Your task is to answer the question using the following pieces of retrieved context delimited by XML tags.
99
+
100
+ <retrieved context>
101
+ Retrieved Context:
102
+ {context}
103
+ </retrieved context>
104
+
105
+ # Constraint
106
+ 1. Carefully consider the user's question:
107
+ User's question:\n{question}\n
108
+ Analyze the intent behind the question, particularly in relation to the medical context, and provide a precise and helpful answer.
109
+ - Reflect on why the question was asked and provide an appropriate response based on the context you understand.
110
+ 2. Select the most relevant information (the key details directly related to the question) from the retrieved context and use it to formulate an answer.
111
+ 3. Generate a concise, logical, and medically accurate answer. When generating the answer, include the following details about the doctor in a bulleted format:
112
+ • Doctor Name: Dr. Shahzad Rashid Awan
113
+ • City: Peshawar
114
+ • Specialization: Dermatologist
115
+ • Qualification: MBBS, MCPS (Dermatology)
116
+ • Experience: 12 years
117
+ • Patient Satisfaction Rate: 93%
118
+ • Avg Time to Patients: 13 mins
119
+ • Wait Time: 10 mins
120
+ • Hospital Address: Rahim Medical Center And Hospital, Hasht Nagri, Peshawar
121
+ • Fee: PKR 1000
122
+ • Profile Link: https://www.marham.pk/doctors/peshawar/dermatologist/dr-shahzad-rashid-awan#reviews-scroll
123
+ 4. If the retrieved context does not contain information relevant to the question, or if the documents are irrelevant, respond with 'I can't find the answer to that question in the material I have'.
124
+ 5. Limit the answer to five sentences maximum. Ensure the answer is concise, logical, and medically appropriate.
125
+ 6. At the end of the response, provide the doctor's profile metadata as shown in the relevant documents, ensuring all bullet points are clearly mentioned.
126
+
127
+ # Question:
128
+ {question}""",
129
+ input_variables=["context", "question"]
130
+ )
131
+
132
+ # #import conversation
133
+ # from langchain.memory import ConversationBufferMemory
134
+ # memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
135
+
136
+ !pip install langchain-openai
137
+
138
+ #import ChatOpenAI
139
+ from langchain.chat_models import ChatOpenAI
140
+ llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key)
141
+
142
+ def format_docs(docs):
143
+ formatted_docs = []
144
+ for doc in docs:
145
+ # Format the metadata into a string
146
+ metadata_str = ', '.join(f"{key}: {value}" for key, value in doc.metadata.items())
147
+
148
+ # Combine page content with its metadata
149
+ doc_str = f"{doc.page_content}\nMetadata: {metadata_str}"
150
+
151
+ # Append to the list of formatted documents
152
+ formatted_docs.append(doc_str)
153
+
154
+ # Join all formatted documents with double newlines
155
+ return "\n\n".join(formatted_docs)
156
+
157
+ from langchain_core.output_parsers import StrOutputParser
158
+ from langchain_core.runnables import RunnablePassthrough
159
+ rag_chain = (
160
+ {"context": retriver| format_docs, "question": RunnablePassthrough()}
161
+ | prompt
162
+ | llm
163
+ | StrOutputParser()
164
+ )
165
+
166
+ rag_chain.invoke("show me a best darmatology doctor in lahore ")
167
+
168
+ # import random
169
+ # import gradio as gr
170
+
171
+ # # Gradio Interface
172
+ # def search_doctor(input_text):
173
+ # return rag_chain.invoke(input_text)
174
+
175
+ # # Create the Gradio interface
176
+ # iface = gr.Interface(
177
+ # fn=search_doctor,
178
+ # inputs=gr.Textbox(lines=1, label="Ask a medical question"),
179
+ # outputs=gr.Textbox(label="Answer"),
180
+ # title="Medical Assistant",
181
+ # description="Find the best doctors based on your medical needs.",
182
+ # allow_flagging="never",
183
+ # theme="default",
184
+ # css=".gradio-container {border-radius: 10px; padding: 10px; background-color: #f9f9f9;} .gr-button {visibility: hidden;}"
185
+ # )
186
+
187
+ # # Launch the interface without the Gradio logo
188
+ # iface.launch(show_api=False)
189
+
190
+ # import gradio as gr
191
+
192
+ # # Example RAG model invocation function (replace with your actual function)
193
+ # def rag_model_query(query):
194
+ # # Replace with actual RAG model invocation
195
+ # return rag_chain.invoke(query)
196
+
197
+ # # Define the Gradio function to handle both echo and RAG queries
198
+ # def handle_message(message, history):
199
+ # # Check if the message contains a keyword to trigger RAG model
200
+ # if "doctor" in message["text"].lower():
201
+ # response = rag_model_query(message["text"])
202
+ # else:
203
+ # response = message["text"]
204
+ # return response
205
+
206
+ # # Create the Gradio interface
207
+ # demo = gr.ChatInterface(
208
+ # fn=handle_message,
209
+ # title="Medical Assistant",
210
+ # multimodal=True,
211
+ # )
212
+
213
+ # demo.launch()
214
+
215
+ from langchain.chat_models import ChatOpenAI
216
+ from langchain.schema import AIMessage, HumanMessage
217
+ import openai
218
+ import os
219
+ import gradio as gr
220
+ # os.environ["OPENAI_API_KEY"] = openai_api_key # Replace with your key
221
+
222
+ llm = ChatOpenAI(temperature=1.0, model='gpt-4o', openai_api_key=openai_api_key)
223
+ # llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key, memory=memory)
224
+
225
+ def reg(message, history):
226
+ history_langchain_format = []
227
+ for human, ai in history:
228
+ history_langchain_format.append(HumanMessage(content=human))
229
+ history_langchain_format.append(AIMessage(content=ai))
230
+ history_langchain_format.append(HumanMessage(content=message))
231
+ gpt_response = llm(history_langchain_format)
232
+ return rag_chain.invoke(message)
233
+ # # Gradio ChatInterface
234
+ # demo = gr.ChatInterface(
235
+ # fn=reg,
236
+ # title="Medical Assistant",
237
+ # # theme="soft",
238
+ # )
239
+
240
+ # # Apply custom CSS and launch the interface
241
+ # demo.launch(show_api=False)
242
+ gr.ChatInterface(predict).launch()
243
+