net2asif commited on
Commit
62ab84e
·
verified ·
1 Parent(s): bae401f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -85
app.py CHANGED
@@ -7,11 +7,6 @@ Original file is located at
7
  https://colab.research.google.com/drive/1wUztAR4EdQUL3vkpM3Is-ps0TEocClry
8
  """
9
 
10
- # !pip install langchain openai qdrant-client gradio pandas tiktoken -U langchain-community
11
-
12
- # from google.colab import userdata
13
- # openai_api_key=userdata.get('openai_api_key')
14
-
15
  import gradio as gr
16
  import pandas as pd
17
  from langchain.document_loaders.csv_loader import CSVLoader
@@ -21,10 +16,6 @@ from langchain.vectorstores import Qdrant
21
  from langchain.chains import VectorDBQA
22
  from langchain.llms import OpenAI
23
 
24
- # qdrant_url=userdata.get('Qdrant')
25
- # qdrant_api_key=userdata.get('qdrant_api_key')
26
- # openai_api_key=userdata.get('openai_api_key')
27
- # # groq_api_key=userdata.get('GROQ_API_KEY')
28
 
29
  import os
30
 
@@ -32,7 +23,6 @@ openai_api_key = os.getenv('openai_api_key')
32
  qdrant_url = os.getenv('QDRANT_URL')
33
  qdrant_api_key = os.getenv('qdrant_api_key')
34
 
35
- # Now you can use these keys in your application
36
 
37
 
38
  #csv loader
@@ -43,7 +33,6 @@ data=loader.load()
43
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
44
  texts = text_splitter.split_documents(data)
45
 
46
- len(texts)
47
 
48
  #embeding
49
  embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
@@ -82,15 +71,6 @@ from re import search
82
  #retriver
83
  retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2})
84
 
85
- #search query
86
- query="show me a best darmatology doctor in peshawar "
87
- docs=retriver.get_relevant_documents(query)
88
-
89
- #write a code for prety print
90
- # for i in docs:
91
- # print(i.page_content)
92
-
93
- # docs[0].metadata.items()
94
 
95
  from langchain import PromptTemplate
96
 
@@ -134,13 +114,7 @@ prompt = PromptTemplate(
134
  input_variables=["context", "question"]
135
  )
136
 
137
- # #import conversation
138
- # from langchain.memory import ConversationBufferMemory
139
- # memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
140
-
141
- # !pip install langchain-openai
142
 
143
- #import ChatOpenAI
144
  from langchain.chat_models import ChatOpenAI
145
  llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key)
146
 
@@ -168,64 +142,17 @@ rag_chain = (
168
  | StrOutputParser()
169
  )
170
 
171
- rag_chain.invoke("show me a best darmatology doctor in lahore ")
172
-
173
- # import random
174
- # import gradio as gr
175
-
176
- # # Gradio Interface
177
- # def search_doctor(input_text):
178
- # return rag_chain.invoke(input_text)
179
-
180
- # # Create the Gradio interface
181
- # iface = gr.Interface(
182
- # fn=search_doctor,
183
- # inputs=gr.Textbox(lines=1, label="Ask a medical question"),
184
- # outputs=gr.Textbox(label="Answer"),
185
- # title="Medical Assistant",
186
- # description="Find the best doctors based on your medical needs.",
187
- # allow_flagging="never",
188
- # theme="default",
189
- # css=".gradio-container {border-radius: 10px; padding: 10px; background-color: #f9f9f9;} .gr-button {visibility: hidden;}"
190
- # )
191
-
192
- # # Launch the interface without the Gradio logo
193
- # iface.launch(show_api=False)
194
-
195
- # import gradio as gr
196
-
197
- # # Example RAG model invocation function (replace with your actual function)
198
- # def rag_model_query(query):
199
- # # Replace with actual RAG model invocation
200
- # return rag_chain.invoke(query)
201
-
202
- # # Define the Gradio function to handle both echo and RAG queries
203
- # def handle_message(message, history):
204
- # # Check if the message contains a keyword to trigger RAG model
205
- # if "doctor" in message["text"].lower():
206
- # response = rag_model_query(message["text"])
207
- # else:
208
- # response = message["text"]
209
- # return response
210
-
211
- # # Create the Gradio interface
212
- # demo = gr.ChatInterface(
213
- # fn=handle_message,
214
- # title="Medical Assistant",
215
- # multimodal=True,
216
- # )
217
-
218
- # demo.launch()
219
 
220
  from langchain.chat_models import ChatOpenAI
221
  from langchain.schema import AIMessage, HumanMessage
222
  import openai
223
  import os
224
  import gradio as gr
225
- # os.environ["OPENAI_API_KEY"] = openai_api_key # Replace with your key
226
 
227
  llm = ChatOpenAI(temperature=1.0, model='gpt-4o', openai_api_key=openai_api_key)
228
- # llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key, memory=memory)
229
 
230
  def reg(message, history):
231
  history_langchain_format = []
@@ -235,13 +162,6 @@ def reg(message, history):
235
  history_langchain_format.append(HumanMessage(content=message))
236
  gpt_response = llm(history_langchain_format)
237
  return rag_chain.invoke(message)
238
- # # Gradio ChatInterface
239
- # demo = gr.ChatInterface(
240
- # fn=reg,
241
- # title="Medical Assistant",
242
- # # theme="soft",
243
- # )
244
-
245
- # demo.launch(show_api=False)
246
- gr.ChatInterface(predict).launch()
247
 
 
7
  https://colab.research.google.com/drive/1wUztAR4EdQUL3vkpM3Is-ps0TEocClry
8
  """
9
 
 
 
 
 
 
10
  import gradio as gr
11
  import pandas as pd
12
  from langchain.document_loaders.csv_loader import CSVLoader
 
16
  from langchain.chains import VectorDBQA
17
  from langchain.llms import OpenAI
18
 
 
 
 
 
19
 
20
  import os
21
 
 
23
  qdrant_url = os.getenv('QDRANT_URL')
24
  qdrant_api_key = os.getenv('qdrant_api_key')
25
 
 
26
 
27
 
28
  #csv loader
 
33
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
34
  texts = text_splitter.split_documents(data)
35
 
 
36
 
37
  #embeding
38
  embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
 
71
  #retriver
72
  retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2})
73
 
 
 
 
 
 
 
 
 
 
74
 
75
  from langchain import PromptTemplate
76
 
 
114
  input_variables=["context", "question"]
115
  )
116
 
 
 
 
 
 
117
 
 
118
  from langchain.chat_models import ChatOpenAI
119
  llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key)
120
 
 
142
  | StrOutputParser()
143
  )
144
 
145
+
146
+
147
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
  from langchain.chat_models import ChatOpenAI
150
  from langchain.schema import AIMessage, HumanMessage
151
  import openai
152
  import os
153
  import gradio as gr
 
154
 
155
  llm = ChatOpenAI(temperature=1.0, model='gpt-4o', openai_api_key=openai_api_key)
 
156
 
157
  def reg(message, history):
158
  history_langchain_format = []
 
162
  history_langchain_format.append(HumanMessage(content=message))
163
  gpt_response = llm(history_langchain_format)
164
  return rag_chain.invoke(message)
165
+
166
+ gr.ChatInterface(reg).launch()
 
 
 
 
 
 
 
167