# -*- coding: utf-8 -*- """ai_app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1wUztAR4EdQUL3vkpM3Is-ps0TEocClry """ import gradio as gr import pandas as pd from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Qdrant from langchain.chains import VectorDBQA from langchain.llms import OpenAI import os openai_api_key = os.getenv('openai_api_key') qdrant_url = os.getenv('QDRANT_URL') qdrant_api_key = os.getenv('qdrant_api_key') #csv loader loader = CSVLoader(file_path='data.csv') data=loader.load() #split the documnts text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(data) #embeding embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small") #import quantization from langchain.vectorstores import Qdrant from qdrant_client import QdrantClient, models from langchain.vectorstores import Qdrant #using qudadrant vector database from qdrant_client import QdrantClient, models qdrant = Qdrant.from_documents( texts, embeding, url=qdrant_url, prefer_grpc=True, api_key=qdrant_api_key, collection_name="llm_app_01", quantization_config=models.BinaryQuantization( binary=models.BinaryQuantizationConfig( always_ram=True, ) ) ) #qdrant client qdrant_client = QdrantClient( url=qdrant_url, prefer_grpc=True, api_key=qdrant_api_key, ) from re import search #retriver retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2}) from langchain import PromptTemplate prompt = PromptTemplate( template=""" # Your Role You are a highly skilled AI specialized in healthcare and medical information retrieval. Your expertise lies in understanding the medical needs of patients and accurately matching them with the most suitable healthcare professionals based on the given context. # Instruction Your task is to answer the question using the following pieces of retrieved context delimited by XML tags. Retrieved Context: {context} # Constraint 1. Carefully consider the user's question: User's question:\n{question}\n Analyze the intent behind the question, particularly in relation to the medical context, and provide a precise and helpful answer. - Reflect on why the question was asked and provide an appropriate response based on the context you understand. 2. Select the most relevant information (the key details directly related to the question) from the retrieved context and use it to formulate an answer. 3. Generate a concise, logical, and medically accurate answer. When generating the answer, include the following details about the doctor in a bulleted format: • Doctor Name: Dr. Shahzad Rashid Awan • City: Peshawar • Specialization: Dermatologist • Qualification: MBBS, MCPS (Dermatology) • Experience: 12 years • Patient Satisfaction Rate: 93% • Avg Time to Patients: 13 mins • Wait Time: 10 mins • Hospital Address: Rahim Medical Center And Hospital, Hasht Nagri, Peshawar • Fee: PKR 1000 • Profile Link: https://www.marham.pk/doctors/peshawar/dermatologist/dr-shahzad-rashid-awan#reviews-scroll 4. If the retrieved context does not contain information relevant to the question, or if the documents are irrelevant, respond with 'I can't find the answer to that question in the material I have'. 5. Limit the answer to five sentences maximum. Ensure the answer is concise, logical, and medically appropriate. 6. At the end of the response, provide the doctor's profile metadata as shown in the relevant documents, ensuring all bullet points are clearly mentioned. # Question: {question}""", input_variables=["context", "question"] ) from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key) def format_docs(docs): formatted_docs = [] for doc in docs: # Format the metadata into a string metadata_str = ', '.join(f"{key}: {value}" for key, value in doc.metadata.items()) # Combine page content with its metadata doc_str = f"{doc.page_content}\nMetadata: {metadata_str}" # Append to the list of formatted documents formatted_docs.append(doc_str) # Join all formatted documents with double newlines return "\n\n".join(formatted_docs) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough rag_chain = ( {"context": retriver| format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage import openai import os import gradio as gr llm = ChatOpenAI(temperature=1.0, model='gpt-4o', openai_api_key=openai_api_key) def reg(message, history): history_langchain_format = [] for human, ai in history: history_langchain_format.append(HumanMessage(content=human)) history_langchain_format.append(AIMessage(content=ai)) history_langchain_format.append(HumanMessage(content=message)) gpt_response = llm(history_langchain_format) return rag_chain.invoke(message) gr.ChatInterface(reg).launch()