Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.graph_objs as go
|
5 |
+
|
6 |
+
def fetch_data(ticker, start_date, end_date):
|
7 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
8 |
+
return data
|
9 |
+
|
10 |
+
def calculate_indicators(data, short_ema, long_ema):
|
11 |
+
# Exponential Moving Averages
|
12 |
+
data['EMA_Short'] = data['Close'].ewm(span=short_ema, adjust=False).mean()
|
13 |
+
data['EMA_Long'] = data['Close'].ewm(span=long_ema, adjust=False).mean()
|
14 |
+
return data
|
15 |
+
|
16 |
+
def identify_signals(data):
|
17 |
+
data['Position'] = (data['EMA_Short'] > data['EMA_Long']).astype(int)
|
18 |
+
data['Signal'] = data['Position'].diff()
|
19 |
+
data['Buy Signal'] = data['Signal'] == 1
|
20 |
+
data['Sell Signal'] = data['Signal'] == -1
|
21 |
+
return data
|
22 |
+
|
23 |
+
def plot_data(data):
|
24 |
+
fig = go.Figure()
|
25 |
+
|
26 |
+
# Adding Close price trace
|
27 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='blue', width=2)))
|
28 |
+
|
29 |
+
# Adding EMAs
|
30 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA_Short'], name=f'EMA {short_ema}', line=dict(color='green', width=1.5)))
|
31 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA_Long'], name=f'EMA {long_ema}', line=dict(color='red', width=1.5)))
|
32 |
+
|
33 |
+
# Adding Buy and Sell signals
|
34 |
+
buys = data[data['Buy Signal']]
|
35 |
+
sells = data[data['Sell Signal']]
|
36 |
+
fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', name='Buy Signal', marker=dict(symbol='triangle-up', size=12, color='green')))
|
37 |
+
fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', name='Sell Signal', marker=dict(symbol='triangle-down', size=12, color='red')))
|
38 |
+
|
39 |
+
# Layout updates
|
40 |
+
fig.update_layout(title='2 EMA Crossover Trading Strategy Visualization', xaxis_title='Date', yaxis_title='Price', template='plotly_dark')
|
41 |
+
fig.update_xaxes(rangeslider_visible=True)
|
42 |
+
|
43 |
+
return fig
|
44 |
+
|
45 |
+
def main():
|
46 |
+
st.sidebar.title("Settings")
|
47 |
+
ticker = st.sidebar.text_input("Enter the ticker symbol, e.g., 'AAPL'", 'AAPL')
|
48 |
+
start_date = st.sidebar.date_input("Select the start date")
|
49 |
+
end_date = st.sidebar.date_input("Select the end date")
|
50 |
+
short_ema = st.sidebar.number_input("Enter the shorter EMA period", min_value=1, value=12)
|
51 |
+
long_ema = st.sidebar.number_input("Enter the longer EMA period", min_value=1, value=26)
|
52 |
+
|
53 |
+
st.title("2 EMA Crossover Trading Strategy")
|
54 |
+
st.markdown("""
|
55 |
+
## Description
|
56 |
+
This application visualizes a 2 Exponential Moving Average (EMA) Crossover Strategy on historical stock data.
|
57 |
+
The strategy involves two EMAs: a shorter period EMA and a longer period EMA.
|
58 |
+
A **buy signal** is generated when the shorter EMA crosses above the longer EMA, and a **sell signal** is generated when the shorter EMA crosses below the longer EMA.
|
59 |
+
""")
|
60 |
+
|
61 |
+
if st.sidebar.button("Analyze"):
|
62 |
+
data = fetch_data(ticker, start_date, end_date)
|
63 |
+
data = calculate_indicators(data, short_ema, long_ema)
|
64 |
+
data = identify_signals(data)
|
65 |
+
fig = plot_data(data)
|
66 |
+
st.plotly_chart(fig, use_container_width=True)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|
70 |
+
|