BreakoutTrading / app.py
netflypsb's picture
Create app.py
a4c0b99 verified
raw
history blame
5.25 kB
import streamlit as st
import yfinance as yf
import pandas as pd
import pandas_ta as ta
import matplotlib.pyplot as plt
# Caching the stock data fetch function to improve performance
@st.cache_data
def fetch_stock_data(ticker, period, interval):
"""
Fetches stock data for the given ticker, period, and interval.
"""
return yf.download(ticker, period=period, interval=interval)
# Streamlit interface setup
st.title("Enhanced Breakout Trading Analysis Tool with Volume Indicator")
# User inputs
ticker = st.text_input("Enter Stock Ticker:", value="AAPL")
# Updated to include a 1-hour time frame option
timeframe_options = ["1d", "1wk", "1mo", "1h"]
timeframe = st.selectbox("Select Time Frame:", options=timeframe_options, index=3)
# Updated to include a 1-month period option
period_options = ["1mo", "3mo", "6mo", "1y", "2y"]
period = st.selectbox("Select Period:", options=period_options, index=0)
analyze_button = st.button("Analyze Breakout Points")
if analyze_button:
try:
# Fetching the stock data with the selected period and interval
stock_data = fetch_stock_data(ticker, period, timeframe)
if not stock_data.empty:
# Calculating technical indicators
stock_data['SMA9'] = ta.sma(stock_data['Close'], length=9)
stock_data['SMA20'] = ta.sma(stock_data['Close'], length=20)
stock_data['SMA50'] = ta.sma(stock_data['Close'], length=50)
stock_data['SMA200'] = ta.sma(stock_data['Close'], length=200)
stock_data['RSI'] = ta.rsi(stock_data['Close'], length=14)
macd = ta.macd(stock_data['Close'])
stock_data['MACD'] = macd['MACD_12_26_9']
stock_data['MACDSignal'] = macd['MACDs_12_26_9']
# Adding volume moving average for comparison
stock_data['Volume_MA20'] = ta.sma(stock_data['Volume'], length=20)
# Identifying breakout points for all three logics with volume increase criterion
crossover_points_logic1 = stock_data[(stock_data['SMA9'] > stock_data['SMA20']) & (stock_data['SMA9'].shift(1) < stock_data['SMA20'].shift(1)) & (stock_data['Volume'] > stock_data['Volume_MA20'])]
crossover_points_logic2 = stock_data[(stock_data['SMA20'] > stock_data['SMA50']) & (stock_data['SMA20'].shift(1) < stock_data['SMA50'].shift(1)) & (stock_data['Volume'] > stock_data['Volume_MA20'])]
crossover_points_original = stock_data[(stock_data['SMA50'] > stock_data['SMA200']) & (stock_data['SMA50'].shift(1) < stock_data['SMA200'].shift(1)) & (stock_data['Volume'] > stock_data['Volume_MA20'])]
# Plotting
fig, ax = plt.subplots(3, 1, figsize=(10, 15), sharex=True)
# Price, SMAs, and breakout points for all logics
ax[0].plot(stock_data['Close'], label='Close Price', color='skyblue')
ax[0].plot(stock_data['SMA9'], label='9-Day SMA', color='orange')
ax[0].plot(stock_data['SMA20'], label='20-Day SMA', color='purple')
ax[0].plot(stock_data['SMA50'], label='50-Day SMA', color='green')
ax[0].plot(stock_data['SMA200'], label='200-Day SMA', color='red')
ax[0].scatter(crossover_points_logic1.index, crossover_points_logic1['Close'], color='gold', label='Logic 1 Breakouts', zorder=5)
ax[0].scatter(crossover_points_logic2.index, crossover_points_logic2['Close'], color='violet', label='Logic 2 Breakouts', zorder=5)
ax[0].scatter(crossover_points_original.index, crossover_points_original['Close'], color='magenta', label='Original Logic Breakouts', zorder=5)
ax[0].set_title(f"{ticker} Price and SMA Breakout Points Analysis")
ax[0].legend()
# Volume and Volume MA
ax[1].bar(stock_data.index, stock_data['Volume'], label='Volume', color='gray', alpha=0.3)
ax[1].plot(stock_data['Volume_MA20'], label='20-Day Volume MA', color='orange')
ax[1].scatter(crossover_points_logic1.index, crossover_points_logic1['Volume'], color='gold', label='Logic 1 Breakouts', zorder=5)
ax[1].scatter(crossover_points_logic2.index, crossover_points_logic2['Volume'], color='violet', label='Logic 2 Breakouts', zorder=5)
ax[1].scatter(crossover_points_original.index, crossover_points_original['Volume'], color='magenta', label='Original Logic Breakouts', zorder=5)
ax[1].set_title(f"{ticker} Volume and Breakout Points")
ax[1].legend()
# RSI and MACD
ax[2].plot(stock_data['RSI'], label='RSI', color='purple')
ax[2].axhline(70, linestyle='--', color='grey', alpha=0.5, label='Overbought')
ax[2].axhline(30, linestyle='--', color='grey', alpha=0.5, label='Oversold')
ax[2].plot(stock_data['MACD'], label='MACD', color='blue')
ax[2].plot(stock_data['MACDSignal'], label='MACD Signal', color='orange')
ax[2].set_title(f"{ticker} RSI & MACD")
ax[2].legend()
# Display plot in Streamlit
st.pyplot(fig)
else:
st.error("No data found for the specified ticker. Please try another ticker.")
except Exception as e:
st.error(f"An error occurred: {e}")