netflypsb commited on
Commit
df1eb78
·
verified ·
1 Parent(s): 71cc2a7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import yfinance as yf
3
+ import pandas as pd
4
+ import pandas_ta as ta
5
+ import matplotlib.pyplot as plt
6
+
7
+ # Caching the stock data fetch function to improve performance
8
+ @st.cache(allow_output_mutation=True)
9
+ def fetch_stock_data(ticker, period, interval):
10
+ try:
11
+ data = yf.download(ticker, period=period, interval=interval)
12
+ return data
13
+ except Exception as e:
14
+ st.error(f"Failed to fetch data: {e}")
15
+ return pd.DataFrame() # Return an empty DataFrame on failure
16
+
17
+ # Streamlit interface setup
18
+ st.title("Enhanced Breakout Trading Analysis Tool with Multiple Logic")
19
+
20
+ # User inputs
21
+ ticker = st.text_input("Enter Stock Ticker:", value="AAPL")
22
+ timeframe_options = ["1d", "1wk", "1mo"]
23
+ timeframe = st.selectbox("Select Time Frame:", options=timeframe_options, index=0)
24
+ period = st.selectbox("Select Period:", options=["6mo", "1y", "2y"], index=1)
25
+ analyze_button = st.button("Analyze Breakout Points")
26
+
27
+ if analyze_button:
28
+ stock_data = fetch_stock_data(ticker, period, timeframe)
29
+
30
+ if stock_data.empty:
31
+ st.error("No data found for the specified ticker. Please try another ticker.")
32
+ else:
33
+ # Calculating technical indicators
34
+ stock_data['SMA9'] = ta.sma(stock_data['Close'], length=9)
35
+ stock_data['SMA20'] = ta.sma(stock_data['Close'], length=20)
36
+ stock_data['SMA50'] = ta.sma(stock_data['Close'], length=50)
37
+ stock_data['SMA200'] = ta.sma(stock_data['Close'], length=200)
38
+ stock_data.dropna(subset=['SMA9', 'SMA20', 'SMA50', 'SMA200'], inplace=True)
39
+
40
+ if stock_data.empty:
41
+ st.error("Insufficient data for the selected period to compute all moving averages. Try a longer period.")
42
+ else:
43
+ # Identifying breakout points for all three logics after ensuring data validity
44
+ crossover_points_logic1 = stock_data[(stock_data['SMA9'] > stock_data['SMA20']) & (stock_data['SMA9'].shift(1) < stock_data['SMA20'].shift(1))]
45
+ crossover_points_logic2 = stock_data[(stock_data['SMA20'] > stock_data['SMA50']) & (stock_data['SMA20'].shift(1) < stock_data['SMA50'].shift(1))]
46
+ crossover_points_original = stock_data[(stock_data['SMA50'] > stock_data['SMA200']) & (stock_data['SMA50'].shift(1) < stock_data['SMA200'].shift(1))]
47
+
48
+ # Plotting
49
+ fig, ax = plt.subplots(2, 1, figsize=(10, 12), sharex=True)
50
+
51
+ # Price, SMAs, and breakout points for all logics
52
+ ax[0].plot(stock_data['Close'], label='Close Price', color='skyblue')
53
+ ax[0].plot(stock_data['SMA9'], label='9-Day SMA', color='orange')
54
+ ax[0].plot(stock_data['SMA20'], label='20-Day SMA', color='purple')
55
+ ax[0].plot(stock_data['SMA50'], label='50-Day SMA', color='green')
56
+ ax[0].plot(stock_data['SMA200'], label='200-Day SMA', color='red')
57
+ ax[0].scatter(crossover_points_logic1.index, crossover_points_logic1['Close'], color='gold', label='Logic 1 Breakouts', zorder=5)
58
+ ax[0].scatter(crossover_points_logic2.index, crossover_points_logic2['Close'], color='violet', label='Logic 2 Breakouts', zorder=5)
59
+ ax[0].scatter(crossover_points_original.index, crossover_points_original['Close'], color='magenta', label='Original Logic Breakouts', zorder=5)
60
+ ax[0].set_title(f"{ticker} Breakout Points Analysis")
61
+ ax[0].legend()
62
+
63
+ # Additional technical indicators (if necessary) could be plotted here
64
+
65
+ # Display plot in Streamlit
66
+ st.pyplot(fig)
67
+