import streamlit as st import yfinance as yf import pandas as pd import pandas_ta as ta import matplotlib.pyplot as plt # Streamlit interface setup st.title("Breakout Trading Analysis Tool") ticker = st.text_input("Enter Stock Ticker:", value="AAPL") timeframe = st.selectbox("Select Time Frame:", options=["1d", "1wk", "1mo"], index=0) analyze_button = st.button("Analyze Breakout Points") if analyze_button: # Fetching the stock data stock_data = yf.download(ticker, period="1y", interval=timeframe) # Calculating technical indicators for breakout identification (e.g., moving averages) stock_data['SMA50'] = ta.sma(stock_data['Close'], length=50) stock_data['SMA200'] = ta.sma(stock_data['Close'], length=200) # Example breakout logic: SMA50 crossing above SMA200 crossover_points = stock_data[(stock_data['SMA50'] > stock_data['SMA200']) & (stock_data['SMA50'].shift(1) < stock_data['SMA200'].shift(1))] # Plotting plt.figure(figsize=(10, 6)) plt.plot(stock_data['Close'], label='Close Price', color='skyblue') plt.plot(stock_data['SMA50'], label='50-Day SMA', color='green') plt.plot(stock_data['SMA200'], label='200-Day SMA', color='red') plt.scatter(crossover_points.index, crossover_points['Close'], color='magenta', label='Breakout Points', zorder=5) plt.title(f"{ticker} Breakout Points Analysis") plt.legend() # Display plot in Streamlit st.pyplot(plt)