Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
# Title and Description | |
st.title('Operational Cash Flow Analysis') | |
st.write(""" | |
This application allows you to analyze and visualize your company's operational cash flow. | |
""") | |
# Data Input Section | |
st.header('Input Financial Data') | |
# Input fields for financial data | |
net_income = st.number_input('Net Income', value=0) | |
depreciation = st.number_input('Depreciation and Amortization', value=0) | |
change_ar = st.number_input('Change in Accounts Receivable', value=0) | |
change_inventory = st.number_input('Change in Inventory', value=0) | |
change_ap = st.number_input('Change in Accounts Payable', value=0) | |
# Calculating Operational Cash Flow | |
ocf = net_income + depreciation - change_ar - change_inventory + change_ap | |
# Displaying the result | |
st.subheader('Calculated Operational Cash Flow') | |
st.write(f'Operational Cash Flow: ${ocf}') | |
# DataFrame for historical data visualization (example data) | |
data = { | |
'Year': ['2020', '2021', '2022'], | |
'Net Income': [100000, 120000, 130000], | |
'Depreciation and Amortization': [20000, 25000, 27000], | |
'Change in AR': [-5000, -6000, -5500], | |
'Change in Inventory': [-8000, -7500, -9000], | |
'Change in AP': [7000, 8500, 9000], | |
'Operational Cash Flow': [114000, 137500, 149500] | |
} | |
df = pd.DataFrame(data) | |
# Display the historical data table | |
st.subheader('Historical Data') | |
st.dataframe(df) | |
# Visualize the historical operational cash flow | |
st.subheader('Operational Cash Flow Over Years') | |
st.line_chart(df[['Year', 'Operational Cash Flow']].set_index('Year')) | |
# Scenario Analysis Section | |
st.header('Scenario Analysis') | |
# Interactive widgets for scenario analysis | |
new_net_income = st.slider('New Net Income', min_value=0, max_value=200000, value=net_income) | |
new_depreciation = st.slider('New Depreciation and Amortization', min_value=0, max_value=50000, value=depreciation) | |
new_change_ar = st.slider('New Change in Accounts Receivable', min_value=-10000, max_value=10000, value=change_ar) | |
new_change_inventory = st.slider('New Change in Inventory', min_value=-15000, max_value=15000, value=change_inventory) | |
new_change_ap = st.slider('New Change in Accounts Payable', min_value=-10000, max_value=10000, value=change_ap) | |
# Recalculate OCF based on new inputs | |
new_ocf = new_net_income + new_depreciation - new_change_ar - new_change_inventory + new_change_ap | |
# Display the new result | |
st.subheader('Scenario Analysis Result') | |
st.write(f'New Operational Cash Flow: ${new_ocf}') | |
# Button to download data as CSV | |
st.download_button( | |
label="Download Data as CSV", | |
data=df.to_csv().encode('utf-8'), | |
file_name='operational_cash_flow.csv', | |
mime='text/csv', | |
) | |