File size: 1,573 Bytes
744162c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd

def simulate_all_in_trading(signals_data):
    """
    Simulates trading by going all-in on the first buy signal and selling all on the first sell signal,
    then repeating the process with the new amount of cash including profit or loss.
    
    Parameters:
    - signals_data (pd.DataFrame): DataFrame with 'Close', 'Buy_Signal', and 'Sell_Signal'.
    
    Returns:
    - float: The final amount of cash after applying the trading strategy.
    - int: The number of trades executed.
    """
    cash = 1000  # Initial cash
    holding = False
    trades_executed = 0

    for index, row in signals_data.iterrows():
        if not holding and row['Buy_Signal']:
            # Buy all you can with the available cash
            shares = cash / row['Close']
            holding = True
            trades_executed += 1

        elif holding and row['Sell_Signal']:
            # Sell all shares
            cash = shares * row['Close']
            holding = False
            trades_executed += 1

    return cash, trades_executed

if __name__ == "__main__":
    # Example DataFrame with close prices and buy/sell signals
    signals_data = pd.DataFrame({
        'Close': [100, 105, 103, 108, 107, 110, 108, 112],  # Example close prices
        'Buy_Signal': [False, True, False, False, True, False, False, False],
        'Sell_Signal': [False, False, True, False, False, True, False, False]
    })

    final_cash, trades = simulate_all_in_trading(signals_data)
    print(f"Final Cash: ${final_cash:.2f}")
    print(f"Trades Executed: {trades}")