import streamlit as st import yfinance as yf import plotly.graph_objects as go import pandas as pd def fetch_data(ticker): data = yf.download(ticker, start='2020-01-01', end='2024-01-01') data['MA Fast'] = data['Close'].rolling(window=5).mean() data['MA Slow'] = data['Close'].rolling(window=10).mean() data['Upper Band'], data['Lower Band'] = data['Close'].rolling(20).mean() + 2*data['Close'].rolling(20).std(), data['Close'].rolling(20).mean() - 2*data['Close'].rolling(20).std() return data def plot_data(data): fig = go.Figure() # Adding Candles fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Candlesticks')) # Adding MA lines fig.add_trace(go.Scatter(x=data.index, y=data['MA Fast'], line=dict(color='blue', width=1.5), name='MA Fast')) fig.add_trace(go.Scatter(x=data.index, y=data['MA Slow'], line=dict(color='red', width=1.5), name='MA Slow')) # Adding Bollinger Bands fig.add_trace(go.Scatter(x=data.index, y=data['Upper Band'], line=dict(color='green', width=1), name='Upper Band')) fig.add_trace(go.Scatter(x=data.index, y=data['Lower Band'], line=dict(color='green', width=1), name='Lower Band')) # Identify buy and sell signals buys = data[(data['Close'] > data['Lower Band']) & (data['Close'] < data['MA Slow'])] sells = data[(data['Close'] < data['Upper Band']) & (data['Close'] > data['MA Fast'])] fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', marker=dict(color='yellow', size=10), name='Buy Signal')) fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', marker=dict(color='purple', size=10), name='Sell Signal')) return fig # Streamlit user interface st.sidebar.header('BBMA Re-entry Strategy') ticker = st.sidebar.text_input('Enter ticker symbol', value='AAPL') button = st.sidebar.button('Analyze') if button: data = fetch_data(ticker) fig = plot_data(data) st.plotly_chart(fig, use_container_width=True)