import streamlit as st import yfinance as yf import pandas as pd import plotly.graph_objects as go def fetch_data(ticker, start_date, end_date): data = yf.download(ticker, start=start_date, end=end_date, interval='60m') data['MA Fast'] = data['Close'].rolling(window=5).mean() data['MA Slow'] = data['Close'].rolling(window=10).mean() data['Upper Band'] = data['Close'].rolling(window=20).mean() + 2*data['Close'].rolling(20).std() data['Lower Band'] = data['Close'].rolling(window=20).mean() - 2*data['Close'].rolling(20).std() return data def plot_data(data): fig = go.Figure() fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Candlesticks')) fig.add_trace(go.Scatter(x=data.index, y=data['MA Fast'], line=dict(color='blue', width=1.5), name='MA Fast')) fig.add_trace(go.Scatter(x=data.index, y=data['MA Slow'], line=dict(color='red', width=1.5), name='MA Slow')) fig.add_trace(go.Scatter(x=data.index, y=data['Upper Band'], line=dict(color='green', width=1), name='Upper Band')) fig.add_trace(go.Scatter(x=data.index, y=data['Lower Band'], line=dict(color='green', width=1), name='Lower Band')) # Buy and sell signals based on BBMA logic buys = data[(data['Close'] > data['Lower Band']) & (data['Close'] < data['MA Slow'])] sells = data[(data['Close'] < data['Upper Band']) & (data['Close'] > data['MA Fast'])] fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', marker=dict(color='yellow', size=10), name='Buy Signal')) fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', marker=dict(color='purple', size=10), name='Sell Signal')) return fig # Streamlit user interface st.title("BBMA Scalping Strategy Visualizer") st.markdown(""" This application visualizes the BBMA Scalping Strategy for selected stocks. Enter the stock ticker, choose a start and end date, and press 'Analyze' to view the strategy's buy and sell signals overlaid on the price chart. """) st.sidebar.header('Input Parameters') ticker = st.sidebar.text_input('Enter ticker symbol', value='AAPL') start_date = st.sidebar.date_input('Start Date', value=pd.to_datetime('2021-01-01')) end_date = st.sidebar.date_input('End Date', value=pd.to_datetime('today')) button = st.sidebar.button('Analyze') if button: data = fetch_data(ticker, start_date, end_date) fig = plot_data(data) st.plotly_chart(fig, use_container_width=True)