import streamlit as st import yfinance as yf import pandas as pd import plotly.graph_objs as go def fetch_data(ticker, start_date, end_date): data = yf.download(ticker, start=start_date, end=end_date) return data def fetch_weekly_data(ticker, start_date, end_date): data = yf.download(ticker, start=start_date, end=end_date, interval='1wk') return data def calculate_indicators(data): # Bollinger Bands data['Middle Band'] = data['Close'].rolling(window=20).mean() data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std() data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std() # Moving Averages data['MA5'] = data['Close'].rolling(window=5).mean() data['MA10'] = data['Close'].rolling(window=10).mean() return data def identify_signals(data, weekly_data): # Calculate Buy and Sell signals on daily data data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \ ((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5'])) data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \ ((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5'])) # Filter signals by volume avg_volume = data['Volume'].rolling(window=20).mean() data['Buy Signal'] = data['Buy Signal'] & (data['Volume'] > avg_volume) data['Sell Signal'] = data['Sell Signal'] & (data['Volume'] > avg_volume) # Confirm signals with weekly data weekly_data = calculate_indicators(weekly_data) data['Weekly Buy Signal'] = weekly_data['Buy Signal'].reindex(data.index, method='ffill') data['Weekly Sell Signal'] = weekly_data['Sell Signal'].reindex(data.index, method='ffill') data['Buy Signal'] = data['Buy Signal'] & data['Weekly Buy Signal'] data['Sell Signal'] = data['Sell Signal'] & data['Weekly Sell Signal'] return data def plot_data(data): fig = go.Figure() # Adding Close price trace fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='blue', width=2))) # Adding Bollinger Bands traces fig.add_trace(go.Scatter(x=data.index, y=data['Upper Band'], name='Upper Bollinger Band', line=dict(color='red', dash='dash'))) fig.add_trace(go.Scatter(x=data.index, y=data['Middle Band'], name='Middle Bollinger Band', line=dict(color='white', dash='dash'))) fig.add_trace(go.Scatter(x=data.index, y=data['Lower Band'], name='Lower Bollinger Band', line=dict(color='red', dash='dash'))) # Adding Moving Averages traces fig.add_trace(go.Scatter(x=data.index, y=data['MA5'], name='5-Day MA', line=dict(color='green', dash='dot'))) fig.add_trace(go.Scatter(x=data.index, y=data['MA10'], name='10-Day MA', line=dict(color='orange', dash='dot'))) # Adding Buy and Sell signals buys = data[data['Buy Signal']] sells = data[data['Sell Signal']] fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', name='Buy Signal', marker=dict(symbol='triangle-up', size=10, color='green'))) fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', name='Sell Signal', marker=dict(symbol='triangle-down', size=10, color='red'))) # Layout updates fig.update_layout(title='Stock Price and Trading Signals', xaxis_title='Date', yaxis_title='Price', template='plotly_dark') fig.update_xaxes(rangeslider_visible=True) return fig def main(): st.title("OMA Ally BBMA Trading Strategy Visualization") ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'") start_date = st.date_input("Select the start date") end_date = st.date_input("Select the end date") if st.button("Analyze"): data = fetch_data(ticker, start_date, end_date) weekly_data = fetch_weekly_data(ticker, start_date, end_date) data = calculate_indicators(data) data = identify_signals(data, weekly_data) fig = plot_data(data) st.plotly_chart(fig, use_container_width=True) if __name__ == "__main__": main()