Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
+
import yfinance as yf
|
6 |
+
|
7 |
+
# Function to calculate Moving Averages and Parabolic SAR
|
8 |
+
def calculate_indicators(data, ema_periods=[5, 25, 50]):
|
9 |
+
for period in ema_periods:
|
10 |
+
data[f'EMA_{period}'] = data['Close'].ewm(span=period, adjust=False).mean()
|
11 |
+
data['high'] = data['High'].rolling(window=2).max()
|
12 |
+
data['low'] = data['Low'].rolling(window=2).min()
|
13 |
+
data['af'] = 0.02
|
14 |
+
data['psar'] = data['Close'][0]
|
15 |
+
for i in range(1, len(data)):
|
16 |
+
if data['Close'][i] > data['psar'][i-1]:
|
17 |
+
data['psar'][i] = data['psar'][i-1] + data['af'][i-1] * (data['high'][i-1] - data['psar'][i-1])
|
18 |
+
else:
|
19 |
+
data['psar'][i] = data['psar'][i-1] - data['af'][i-1] * (data['psar'][i-1] - data['low'][i-1])
|
20 |
+
if data['psar'][i] > data['Close'][i]:
|
21 |
+
data['psar'][i] = data['low'][i-1]
|
22 |
+
else:
|
23 |
+
data['psar'][i] = data['high'][i-1]
|
24 |
+
if (data['Close'][i] > data['Close'][i-1] and data['af'][i-1] < 0.2):
|
25 |
+
data['af'][i] = data['af'][i-1] + 0.02
|
26 |
+
elif (data['Close'][i] < data['Close'][i-1]):
|
27 |
+
data['af'][i] = 0.02
|
28 |
+
return data
|
29 |
+
|
30 |
+
# Function to plot the data
|
31 |
+
def plot_data(data):
|
32 |
+
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02)
|
33 |
+
fig.add_trace(go.Candlestick(x=data.index,
|
34 |
+
open=data['Open'], high=data['High'],
|
35 |
+
low=data['Low'], close=data['Close'],
|
36 |
+
name='Candlestick'), row=1, col=1)
|
37 |
+
for ema in [5, 25, 50]:
|
38 |
+
fig.add_trace(go.Scatter(x=data.index, y=data[f'EMA_{ema}'], mode='lines', name=f'EMA {ema}'), row=1, col=1)
|
39 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['psar'], mode='markers', marker_symbol='circle', name='Parabolic SAR'), row=1, col=1)
|
40 |
+
return fig
|
41 |
+
|
42 |
+
# Streamlit app layout
|
43 |
+
st.title('Profit Parabolic Trading Strategy Visualization')
|
44 |
+
|
45 |
+
st.sidebar.header('User Input Parameters')
|
46 |
+
ticker = st.sidebar.text_input('Ticker Symbol', 'AAPL')
|
47 |
+
start_date = st.sidebar.date_input('Start Date', pd.to_datetime('2020-01-01'))
|
48 |
+
end_date = st.sidebar.date_input('End Date', pd.to_datetime('today'))
|
49 |
+
button = st.sidebar.button('Analyze')
|
50 |
+
|
51 |
+
if button:
|
52 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
53 |
+
data = calculate_indicators(data)
|
54 |
+
fig = plot_data(data)
|
55 |
+
st.plotly_chart(fig, use_container_width=True)
|
56 |
+
|