Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
from sklearn.ensemble import RandomForestRegressor
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
# Function to compute RSI
|
13 |
+
def compute_rsi(data, window):
|
14 |
+
diff = data.diff(1).dropna()
|
15 |
+
gain = diff.where(diff > 0, 0)
|
16 |
+
loss = -diff.where(diff < 0, 0)
|
17 |
+
avg_gain = gain.rolling(window=window, min_periods=1).mean()
|
18 |
+
avg_loss = loss.rolling(window=window, min_periods=1).mean()
|
19 |
+
rs = avg_gain / avg_loss
|
20 |
+
rsi = 100 - (100 / (1 + rs))
|
21 |
+
return rsi
|
22 |
+
|
23 |
+
# Set up the Streamlit app
|
24 |
+
st.title("Bitcoin Price Prediction")
|
25 |
+
st.write("This app uses historical data to predict future Bitcoin prices.")
|
26 |
+
|
27 |
+
# Fetch Bitcoin historical data using yfinance
|
28 |
+
btc_data = yf.download('BTC-USD', start='2020-01-01', end=datetime.today().strftime('%Y-%m-%d'))
|
29 |
+
btc_data.reset_index(inplace=True)
|
30 |
+
|
31 |
+
# Display the historical data
|
32 |
+
st.write("Historical Bitcoin Data")
|
33 |
+
st.dataframe(btc_data.tail())
|
34 |
+
|
35 |
+
# Feature engineering
|
36 |
+
btc_data['MA_10'] = btc_data['Close'].rolling(window=10).mean()
|
37 |
+
btc_data['MA_50'] = btc_data['Close'].rolling(window=50).mean()
|
38 |
+
btc_data['RSI'] = compute_rsi(btc_data['Close'], window=14)
|
39 |
+
btc_data['Return'] = btc_data['Close'].pct_change()
|
40 |
+
btc_data.dropna(inplace=True)
|
41 |
+
|
42 |
+
# Prepare features and target variable
|
43 |
+
X = btc_data[['Open', 'High', 'Low', 'Volume', 'MA_10', 'MA_50', 'RSI', 'Return']]
|
44 |
+
y = btc_data['Close']
|
45 |
+
|
46 |
+
# Split the data
|
47 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
48 |
+
|
49 |
+
# Scale the features
|
50 |
+
scaler = StandardScaler()
|
51 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
52 |
+
X_test_scaled = scaler.transform(X_test)
|
53 |
+
|
54 |
+
# Train the Linear Regression model
|
55 |
+
lr_model = LinearRegression()
|
56 |
+
lr_model.fit(X_train_scaled, y_train)
|
57 |
+
|
58 |
+
# Train the Random Forest model
|
59 |
+
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
|
60 |
+
rf_model.fit(X_train_scaled, y_train)
|
61 |
+
|
62 |
+
# Predict future prices using ensemble method
|
63 |
+
future_dates = [btc_data['Date'].iloc[-1] + timedelta(days=x) for x in range(1, 15)]
|
64 |
+
future_df = pd.DataFrame(index=future_dates, columns=X.columns)
|
65 |
+
future_df = future_df.fillna(method='ffill')
|
66 |
+
|
67 |
+
future_X_scaled = scaler.transform(future_df)
|
68 |
+
lr_predictions = lr_model.predict(future_X_scaled)
|
69 |
+
rf_predictions = rf_model.predict(future_X_scaled)
|
70 |
+
|
71 |
+
# Combine predictions (average)
|
72 |
+
combined_predictions = (lr_predictions + rf_predictions) / 2
|
73 |
+
|
74 |
+
# Display predictions
|
75 |
+
predictions_df = pd.DataFrame({'Date': future_dates, 'Predicted Close': combined_predictions})
|
76 |
+
predictions_df.set_index('Date', inplace=True)
|
77 |
+
st.write("Future Bitcoin Price Predictions")
|
78 |
+
st.dataframe(predictions_df)
|
79 |
+
|
80 |
+
# Plot the predictions
|
81 |
+
st.line_chart(predictions_df['Predicted Close'])
|