Spaces:
Sleeping
Sleeping
import streamlit as st | |
import random | |
import numpy as np | |
def simple_random_sampling(population_size, sample_size, seed=None): | |
if seed is not None: | |
random.seed(seed) | |
population = list(range(1, population_size + 1)) | |
if sample_size > population_size: | |
st.error("Sample size cannot be greater than population size.") | |
return None | |
return random.sample(population, sample_size) | |
def stratified_sampling(population_size, sample_size, strata_sizes, seed=None): | |
if seed is not None: | |
random.seed(seed) | |
strata_boundaries = np.cumsum(strata_sizes) | |
population = list(range(1, population_size + 1)) | |
sample = [] | |
for i, size in enumerate(strata_sizes): | |
start = 0 if i == 0 else strata_boundaries[i-1] | |
end = strata_boundaries[i] | |
stratum_population = population[start:end] | |
stratum_sample_size = int(size / population_size * sample_size) | |
sample.extend(random.sample(stratum_population, stratum_sample_size)) | |
return sample | |
def cluster_sampling(clusters, selected_clusters, seed=None): | |
if seed is not None: | |
random.seed(seed) | |
selected = random.sample(clusters, selected_clusters) | |
return [item for sublist in selected for item in sublist] | |
def systematic_sampling(population_size, sample_size, seed=None): | |
if seed is not None: | |
random.seed(seed) | |
step = population_size // sample_size | |
start = random.randint(0, step - 1) | |
return list(range(start, population_size, step))[:sample_size] | |
def snowball_sampling(initial_samples, recruit_per_sample, population): | |
sample = set(initial_samples) | |
while len(sample) < recruit_per_sample: | |
recruits = [random.choice(population) for _ in range(recruit_per_sample)] | |
sample.update(recruits) | |
return list(sample)[:recruit_per_sample] | |
def main(): | |
st.title('Advanced Sampling Methods App') | |
st.markdown(""" | |
## Description | |
Select from various sampling methods depending on your research needs. | |
Each method has specific inputs tailored to different research scenarios. | |
""") | |
sampling_method = st.sidebar.selectbox("Choose the sampling method", | |
("Simple Random Sampling", "Stratified Sampling", | |
"Cluster Sampling", "Systematic Sampling", | |
"Snowball Sampling")) | |
population_size = st.sidebar.number_input('Enter Population Size', min_value=1, value=1000, step=1) | |
sample_size = st.sidebar.number_input('Enter Sample Size', min_value=1, value=50, step=1) | |
seed = st.sidebar.number_input('Enter Random Seed (optional)', min_value=0, value=None, step=1, format='%d', key='seed') | |
if sampling_method == "Stratified Sampling": | |
strata_sizes = st.sidebar.text_input('Enter Strata Sizes (comma-separated, e.g., 10,20,30)') | |
strata_sizes = list(map(int, strata_sizes.split(','))) if strata_sizes else [] | |
if sampling_method == "Cluster Sampling": | |
num_clusters = st.sidebar.number_input('Enter Number of Clusters', min_value=1, value=5, step=1) | |
selected_clusters = st.sidebar.number_input('Enter Number of Clusters to Sample', min_value=1, value=2, step=1) | |
clusters = [list(range(i * 100, (i + 1) * 100)) for i in range(num_clusters)] | |
if st.sidebar.button('Generate Sample'): | |
sample = [] | |
if sampling_method == "Simple Random Sampling": | |
sample = simple_random_sampling(population_size, sample_size, seed) | |
elif sampling_method == "Stratified Sampling": | |
sample = stratified_sampling(population_size, sample_size, strata_sizes, seed) | |
elif sampling_method == "Cluster Sampling": | |
sample = cluster_sampling(clusters, selected_clusters, seed) | |
elif sampling_method == "Systematic Sampling": | |
sample = systematic_sampling(population_size, sample_size, seed) | |
elif sampling_method == "Snowball Sampling": | |
initial_samples = [random.randint(1, population_size) for _ in range(5)] | |
sample = snowball_sampling(initial_samples, sample_size, range(1, population_size + 1)) | |
if sample: | |
st.write(f'### {sampling_method} Output') | |
st.write(f'Sample: {sample}') | |
st.write(f'Sample Size: {len(sample)}') | |
if seed is not None: | |
st.write(f'Random Seed Used: {seed}') | |
if __name__ == '__main__': | |
main() | |