import streamlit as st import random import numpy as np def simple_random_sampling(population_size, sample_size, seed=None): if seed is not None: random.seed(seed) population = list(range(1, population_size + 1)) if sample_size > population_size: st.error("Sample size cannot be greater than population size.") return None return random.sample(population, sample_size) def stratified_sampling(population_size, sample_size, strata_sizes, seed=None): if seed is not None: random.seed(seed) strata_boundaries = np.cumsum(strata_sizes) population = list(range(1, population_size + 1)) sample = [] for i, size in enumerate(strata_sizes): start = 0 if i == 0 else strata_boundaries[i-1] end = strata_boundaries[i] stratum_population = population[start:end] stratum_sample_size = int(size / population_size * sample_size) sample.extend(random.sample(stratum_population, stratum_sample_size)) return sample def cluster_sampling(clusters, selected_clusters, seed=None): if seed is not None: random.seed(seed) selected = random.sample(clusters, selected_clusters) return [item for sublist in selected for item in sublist] def systematic_sampling(population_size, sample_size, seed=None): if seed is not None: random.seed(seed) step = population_size // sample_size start = random.randint(0, step - 1) return list(range(start, population_size, step))[:sample_size] def snowball_sampling(initial_samples, recruit_per_sample, population): sample = set(initial_samples) while len(sample) < recruit_per_sample: recruits = [random.choice(population) for _ in range(recruit_per_sample)] sample.update(recruits) return list(sample)[:recruit_per_sample] def main(): st.title('Advanced Sampling Methods App') st.markdown(""" ## Description Select from various sampling methods depending on your research needs. Each method has specific inputs tailored to different research scenarios. """) sampling_method = st.sidebar.selectbox("Choose the sampling method", ("Simple Random Sampling", "Stratified Sampling", "Cluster Sampling", "Systematic Sampling", "Snowball Sampling")) population_size = st.sidebar.number_input('Enter Population Size', min_value=1, value=1000, step=1) sample_size = st.sidebar.number_input('Enter Sample Size', min_value=1, value=50, step=1) seed = st.sidebar.number_input('Enter Random Seed (optional)', min_value=0, value=None, step=1, format='%d', key='seed') if sampling_method == "Stratified Sampling": strata_sizes = st.sidebar.text_input('Enter Strata Sizes (comma-separated, e.g., 10,20,30)') strata_sizes = list(map(int, strata_sizes.split(','))) if strata_sizes else [] if sampling_method == "Cluster Sampling": num_clusters = st.sidebar.number_input('Enter Number of Clusters', min_value=1, value=5, step=1) selected_clusters = st.sidebar.number_input('Enter Number of Clusters to Sample', min_value=1, value=2, step=1) clusters = [list(range(i * 100, (i + 1) * 100)) for i in range(num_clusters)] if st.sidebar.button('Generate Sample'): sample = [] if sampling_method == "Simple Random Sampling": sample = simple_random_sampling(population_size, sample_size, seed) elif sampling_method == "Stratified Sampling": sample = stratified_sampling(population_size, sample_size, strata_sizes, seed) elif sampling_method == "Cluster Sampling": sample = cluster_sampling(clusters, selected_clusters, seed) elif sampling_method == "Systematic Sampling": sample = systematic_sampling(population_size, sample_size, seed) elif sampling_method == "Snowball Sampling": initial_samples = [random.randint(1, population_size) for _ in range(5)] sample = snowball_sampling(initial_samples, sample_size, range(1, population_size + 1)) if sample: st.write(f'### {sampling_method} Output') st.write(f'Sample: {sample}') st.write(f'Sample Size: {len(sample)}') if seed is not None: st.write(f'Random Seed Used: {seed}') if __name__ == '__main__': main()