netflypsb's picture
Create sarima.py
f852243 verified
import pandas as pd
from statsmodels.tsa.statespace.sarimax import SARIMAX
def sarima_forecast(data, forecast_horizon, order=(1, 1, 1), seasonal_order=(1, 1, 1, 12)):
"""
Forecast future values using a SARIMA model with a dynamic forecast horizon.
Parameters:
- data: Pandas Series of historical closing prices.
- forecast_horizon: Integer specifying the number of days to forecast.
- order: The (p, d, q) order of the model for the number of AR parameters, differences, and MA parameters.
- seasonal_order: The (P, D, Q, s) seasonal order of the model.
Returns:
- Pandas Series containing the forecasted values with a datetime index.
"""
# Fit the SARIMA model
model = SARIMAX(data, order=order, seasonal_order=seasonal_order, enforce_stationarity=False, enforce_invertibility=False)
model_fit = model.fit(disp=False)
# Forecast for the specified horizon
forecast = model_fit.forecast(steps=forecast_horizon)
# Create a pandas Series for the forecasted values with a date index
future_dates = pd.date_range(start=data.index[-1] + pd.Timedelta(days=1), periods=forecast_horizon)
forecast_series = pd.Series(forecast, index=future_dates)
return forecast_series