Spaces:
Runtime error
Runtime error
Create algo/tbats.py
Browse files- algo/tbats.py +28 -0
algo/tbats.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tbats import TBATS
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def tbats_forecast(data, forecast_horizon):
|
5 |
+
"""
|
6 |
+
Forecast future values using the TBATS model, with a dynamic forecast horizon.
|
7 |
+
|
8 |
+
Parameters:
|
9 |
+
- data: Pandas Series of historical closing prices.
|
10 |
+
- forecast_horizon: Integer specifying the number of days to forecast.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
- Pandas Series containing the forecasted values with a datetime index.
|
14 |
+
"""
|
15 |
+
# Instantiate the TBATS estimator with seasonal periods. Adjust these as necessary.
|
16 |
+
estimator = TBATS(seasonal_periods=(7, 365.25), use_trend=True, use_box_cox=False)
|
17 |
+
|
18 |
+
# Fit the model to the historical data
|
19 |
+
model = estimator.fit(data)
|
20 |
+
|
21 |
+
# Forecast for the specified horizon
|
22 |
+
forecast = model.forecast(steps=forecast_horizon)
|
23 |
+
|
24 |
+
# Creating a pandas Series for the forecast, indexed by future dates
|
25 |
+
future_dates = pd.date_range(start=data.index[-1] + pd.Timedelta(days=1), periods=forecast_horizon)
|
26 |
+
forecast_series = pd.Series(forecast, index=future_dates)
|
27 |
+
|
28 |
+
return forecast_series
|