import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import yfinance as yf st.set_page_config( page_title="US Stock Forecast", page_icon="logo.png", menu_items=None ) st.write("# US Stocks Forecast") # Importing forecasting algorithms from the algo directory from algo.sarima import sarima_forecast from algo.linear_regression import linear_regression_forecast from algo.tbats import tbats_forecast from algo.random_forest import random_forest_forecast # Function to fetch stock data def fetch_stock_data(ticker, start_date, end_date): data = yf.download(ticker, start=start_date, end=end_date) return data['Close'] # Function to plot forecasts def plot_forecasts(data, forecasts, title='Stock Price Forecast'): plt.figure(figsize=(10, 6)) plt.plot(data.index, data, label='Historical Prices', color='black', alpha=0.75) for name, forecast in forecasts.items(): plt.plot(forecast.index, forecast, label=name) if len(forecasts) > 1: combined_forecast = pd.concat(forecasts.values()).groupby(level=0).mean() plt.plot(combined_forecast.index, combined_forecast, label='Combined Forecast', color='red', linestyle='--') plt.title(title) plt.xlabel('Date') plt.ylabel('Price') plt.legend() st.pyplot(plt) # Streamlit UI in Sidebar st.sidebar.title("Input Parameters") ticker = st.sidebar.text_input('Enter Ticker Symbol', 'AAPL') start_date = st.sidebar.date_input('Select Start Date', value=pd.to_datetime('2020-01-01')) end_date = st.sidebar.date_input('Select End Date', value=pd.to_datetime('2023-01-01')) forecast_horizon = st.sidebar.number_input('Forecast Horizon (days)', min_value=1, value=180) forecast_date = st.sidebar.date_input('Forecast Date', min_value=end_date, value=end_date + pd.Timedelta(days=180)) # User selects which forecasting models to use in Sidebar options = st.sidebar.multiselect('Select forecasting models to use', ['SARIMA', 'Linear Regression', 'TBATS', 'Random Forest'], ['SARIMA', 'Linear Regression']) if st.sidebar.button('Analyze'): data = fetch_stock_data(ticker, start_date, end_date) forecasts = {} if 'SARIMA' in options: forecasts['SARIMA'] = sarima_forecast(data, forecast_horizon) if 'Linear Regression' in options: forecasts['Linear Regression'] = linear_regression_forecast(data, forecast_horizon) if 'TBATS' in options: forecasts['TBATS'] = tbats_forecast(data, forecast_horizon) if 'Random Forest' in options: forecasts['Random Forest'] = random_forest_forecast(data, forecast_horizon) plot_forecasts(data, forecasts, f"Forecasted Stock Prices for {ticker}") # Output the forecasted price for the selected date, if available forecast_date_str = forecast_date.strftime('%Y-%m-%d') for model_name, forecast in forecasts.items(): if forecast_date_str in forecast.index: st.write(f"Forecasted price by {model_name} on {forecast_date_str}: {forecast.loc[forecast_date_str]:.2f}")