Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
# Required imports
|
2 |
-
import yfinance as yf
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
from scipy.signal import find_peaks
|
6 |
-
import plotly.graph_objects as go
|
7 |
-
import plotly.express as px
|
8 |
-
import streamlit as st
|
9 |
-
from plotly.subplots import make_subplots
|
10 |
-
|
11 |
-
# Define functions for technical indicators
|
12 |
-
def compute_macd(data, slow=26, fast=12, smooth=9):
|
13 |
-
exp1 = data['Close'].ewm(span=fast, adjust=False).mean()
|
14 |
-
exp2 = data['Close'].ewm(span=slow, adjust=False).mean()
|
15 |
-
macd = exp1 - exp2
|
16 |
-
signal = macd.ewm(span=smooth, adjust=False).mean()
|
17 |
-
return macd, signal
|
18 |
-
|
19 |
-
def compute_rsi(data, window=14):
|
20 |
-
delta = data['Close'].diff()
|
21 |
-
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
22 |
-
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
23 |
-
rs = gain / loss
|
24 |
-
return 100 - (100 / (1 + rs))
|
25 |
-
|
26 |
-
def compute_bollinger(data, window=20, num_std=2):
|
27 |
-
rolling_mean = data['Close'].rolling(window=window).mean()
|
28 |
-
rolling_std = data['Close'].rolling(window=window).std()
|
29 |
-
upper_band = rolling_mean + (rolling_std * num_std)
|
30 |
-
lower_band = rolling_mean - (rolling_std * num_std)
|
31 |
-
return upper_band, lower_band
|
32 |
-
|
33 |
-
# Streamlit UI - Introduction and How to Use the App
|
34 |
-
st.title("Netflyp Stock and Crypto Analysis Tool")
|
35 |
-
st.markdown("""
|
36 |
-
Welcome to Netflyp Stock and Crypto Analysis Tool. This version includes RSI, MACD, Bollinger Bands, and volume indicators.
|
37 |
-
|
38 |
-
**Features**:
|
39 |
-
- View stock and crypto price movements and indicators over time.
|
40 |
-
- Analyze technical indicators such as RSI, MACD, and Bollinger Bands.
|
41 |
-
- Identify and visualize MA crossovers which are significant for trading strategies.
|
42 |
-
- Download charts for offline analysis.
|
43 |
-
|
44 |
-
**Instructions**:
|
45 |
-
1. Enter a stock or crypto symbol (as they are in yahoo finance) in the sidebar or choose from sample tickers below.
|
46 |
-
2. Select your desired time period.
|
47 |
-
3. Click the 'Analyze' button to load and display the data.
|
48 |
-
""")
|
49 |
-
|
50 |
-
# User Inputs
|
51 |
-
sidebar = st.sidebar
|
52 |
-
symbol = sidebar.text_input("Enter stock or crypto symbol", "AAPL")
|
53 |
-
period = sidebar.selectbox("Select period", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])
|
54 |
-
|
55 |
-
# Sample Inputs
|
56 |
-
sample_tickers = ["NVDA", "BTC-USD", "5258.KL", "5209.KL", "5235SS.KL"]
|
57 |
-
ticker_buttons = st.radio("Sample tickers:", sample_tickers)
|
58 |
-
|
59 |
-
# Set ticker from sample when clicked
|
60 |
-
if ticker_buttons:
|
61 |
-
symbol = ticker_buttons
|
62 |
-
sidebar.text_input("Enter stock symbol", value=symbol, key="1")
|
63 |
-
|
64 |
-
# Button to trigger analysis
|
65 |
-
if st.button('Analyze') or st.sidebar.button('Analyze Sidebar'):
|
66 |
-
# Fetch stock data
|
67 |
-
data = yf.download(symbol, period=period)
|
68 |
-
|
69 |
-
# Calculate technical indicators
|
70 |
-
data['MA20'] = data['Close'].rolling(window=20).mean()
|
71 |
-
data['MA50'] = data['Close'].rolling(window=50).mean()
|
72 |
-
data['MA200'] = data['Close'].rolling(window=200).mean()
|
73 |
-
data['RSI'] = compute_rsi(data)
|
74 |
-
data['MACD'], data['Signal'] = compute_macd(data)
|
75 |
-
data['Upper_Band'], data['Lower_Band'] = compute_bollinger(data)
|
76 |
-
|
77 |
-
# Plot setup
|
78 |
-
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.02,
|
79 |
-
subplot_titles=('Stock Price and Moving Averages', 'Volume and Bollinger Bands', 'RSI and MACD'))
|
80 |
-
|
81 |
-
# Add traces
|
82 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price'), row=1, col=1)
|
83 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green')), row=1, col=1)
|
84 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue')), row=1, col=1)
|
85 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red')), row=1, col=1)
|
86 |
-
fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume'), row=2, col=1)
|
87 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['Upper_Band'], name='Upper Bollinger Band', line=dict(color='purple')), row=2, col=1)
|
88 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['Lower_Band'], name='Lower Bollinger Band', line=dict(color='purple')), row=2, col=1)
|
89 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='orange')), row=3, col=1)
|
90 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['MACD'], name='MACD', line=dict(color='pink')), row=3, col=1)
|
91 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['Signal'], name='MACD Signal', line=dict(color='cyan')), row=3, col=1)
|
92 |
-
|
93 |
-
# Layout adjustments
|
94 |
-
fig.update_layout(height=1200, width=800, showlegend=True)
|
95 |
-
fig.update_yaxes(title_text="Price", row=1, col=1)
|
96 |
-
fig.update_yaxes(title_text="Volume", row=2, col=1)
|
97 |
-
fig.update_yaxes(title_text="Index Value", row=3, col=1)
|
98 |
-
|
99 |
-
# Display the chart with a download button
|
100 |
-
st.plotly_chart(fig)
|
101 |
-
fig.write_html("stock_analysis_chart.html")
|
102 |
-
st.markdown("[Download Chart](stock_analysis_chart.html)")
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|