Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
def fetch_data(ticker, start_date, end_date):
|
7 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
8 |
+
return data
|
9 |
+
|
10 |
+
def calculate_indicators(data):
|
11 |
+
# High and low for the breakout signals
|
12 |
+
data['20 Day High'] = data['High'].rolling(window=20).max()
|
13 |
+
data['20 Day Low'] = data['Low'].rolling(window=20).min()
|
14 |
+
data['55 Day High'] = data['High'].rolling(window=55).max()
|
15 |
+
data['55 Day Low'] = data['Low'].rolling(window=55).min()
|
16 |
+
|
17 |
+
return data
|
18 |
+
|
19 |
+
def identify_signals(data):
|
20 |
+
# Buy signals are generated when the price exceeds the 20-day high
|
21 |
+
data['Buy Signal'] = (data['Close'] > data['20 Day High'].shift(1))
|
22 |
+
# Sell signals are generated when the price drops below the 20-day low
|
23 |
+
data['Sell Signal'] = (data['Close'] < data['20 Day Low'].shift(1))
|
24 |
+
|
25 |
+
signals = []
|
26 |
+
for index, row in data.iterrows():
|
27 |
+
if row['Buy Signal']:
|
28 |
+
signals.append({'Date': index, 'Signal Type': 'Buy', 'Price': row['Close']})
|
29 |
+
if row['Sell Signal']:
|
30 |
+
signals.append({'Date': index, 'Signal Type': 'Sell', 'Price': row['Close']})
|
31 |
+
|
32 |
+
return data, pd.DataFrame(signals)
|
33 |
+
|
34 |
+
def plot_data(data):
|
35 |
+
plt.figure(figsize=(12, 6))
|
36 |
+
plt.plot(data['Close'], label='Close Price')
|
37 |
+
|
38 |
+
buy_signals = data[data['Buy Signal']]
|
39 |
+
sell_signals = data[data['Sell Signal']]
|
40 |
+
plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal')
|
41 |
+
plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal')
|
42 |
+
|
43 |
+
plt.title('Stock Price and Turtle Trading Signals')
|
44 |
+
plt.xlabel('Date')
|
45 |
+
plt.ylabel('Price')
|
46 |
+
plt.legend()
|
47 |
+
plt.grid(True)
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
def main():
|
51 |
+
st.title("Turtle Trading Strategy Visualization")
|
52 |
+
ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'")
|
53 |
+
start_date = st.date_input("Select the start date")
|
54 |
+
end_date = st.date_input("Select the end date")
|
55 |
+
|
56 |
+
if st.button("Analyze"):
|
57 |
+
data = fetch_data(ticker, start_date, end_date)
|
58 |
+
data = calculate_indicators(data)
|
59 |
+
data, signals = identify_signals(data)
|
60 |
+
plot_data(data)
|
61 |
+
st.pyplot(plt)
|
62 |
+
if not signals.empty:
|
63 |
+
st.write("Trading Signals:")
|
64 |
+
st.dataframe(signals)
|
65 |
+
else:
|
66 |
+
st.write("No trading signals found for the selected period.")
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|