Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
|
6 |
+
# Function to calculate moving averages
|
7 |
+
def calculate_moving_average(data, window_size):
|
8 |
+
return data['Close'].rolling(window=window_size).mean()
|
9 |
+
|
10 |
+
# Function to detect support and resistance levels
|
11 |
+
def detect_support_resistance(data):
|
12 |
+
# This is a simple placeholder for actual support and resistance logic
|
13 |
+
return data['Close'].rolling(window=20).min(), data['Close'].rolling(window=20).max()
|
14 |
+
|
15 |
+
# VSA signals logic placeholder
|
16 |
+
def vsa_signals(data):
|
17 |
+
# This should include real VSA calculation logic based on volume and spread
|
18 |
+
buy_signals = pd.Series(index=data.index, dtype='float64')
|
19 |
+
sell_signals = pd.Series(index=data.index, dtype='float64')
|
20 |
+
# Dummy logic for demonstration:
|
21 |
+
buy_signals[data['Volume'] > data['Volume'].rolling(20).mean()] = data['Low']
|
22 |
+
sell_signals[data['Volume'] < data['Volume'].rolling(20).mean()] = data['High']
|
23 |
+
return buy_signals, sell_signals
|
24 |
+
|
25 |
+
# Streamlit sidebar options
|
26 |
+
ticker = st.sidebar.text_input('Ticker Symbol', value='AAPL')
|
27 |
+
start_date = st.sidebar.date_input('Start Date', pd.to_datetime('2020-01-01'))
|
28 |
+
end_date = st.sidebar.date_input('End Date', pd.to_datetime('2020-12-31'))
|
29 |
+
analyze_button = st.sidebar.button('Analyze')
|
30 |
+
|
31 |
+
if analyze_button:
|
32 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
33 |
+
if not data.empty:
|
34 |
+
# Calculations
|
35 |
+
moving_average = calculate_moving_average(data, window_size=20)
|
36 |
+
support, resistance = detect_support_resistance(data)
|
37 |
+
buy_signals, sell_signals = vsa_signals(data)
|
38 |
+
|
39 |
+
# Plotting
|
40 |
+
fig = go.Figure()
|
41 |
+
|
42 |
+
# Add candlestick chart
|
43 |
+
fig.add_trace(go.Candlestick(x=data.index,
|
44 |
+
open=data['Open'],
|
45 |
+
high=data['High'],
|
46 |
+
low=data['Low'],
|
47 |
+
close=data['Close'], name='Market Data'))
|
48 |
+
|
49 |
+
# Add Moving Average Line
|
50 |
+
fig.add_trace(go.Scatter(x=data.index, y=moving_average, mode='lines', name='20-day MA'))
|
51 |
+
|
52 |
+
# Add Support and Resistance Lines
|
53 |
+
fig.add_trace(go.Scatter(x=data.index, y=support, mode='lines', name='Support', line=dict(color='green')))
|
54 |
+
fig.add_trace(go.Scatter(x=data.index, y=resistance, mode='lines', name='Resistance', line=dict(color='red')))
|
55 |
+
|
56 |
+
# Add Buy and Sell Signals
|
57 |
+
fig.add_trace(go.Scatter(x=buy_signals.index, y=buy_signals, mode='markers', marker=dict(color='blue', size=10), name='Buy Signal'))
|
58 |
+
fig.add_trace(go.Scatter(x=sell_signals.index, y=sell_signals, mode='markers', marker=dict(color='orange', size=10), name='Sell Signal'))
|
59 |
+
|
60 |
+
# Layout settings
|
61 |
+
fig.update_layout(title='VSA Trading Strategy Analysis', xaxis_title='Date', yaxis_title='Price', template='plotly_dark')
|
62 |
+
|
63 |
+
# Display the figure
|
64 |
+
st.plotly_chart(fig)
|
65 |
+
|
66 |
+
# App introduction and guide
|
67 |
+
st.title('VSA Trading Strategy Visualizer')
|
68 |
+
st.markdown('''
|
69 |
+
This app provides an interactive way to visualize the Volume Spread Analysis (VSA) trading strategy with buy and sell signals based on the strategy.
|
70 |
+
To start, enter the ticker symbol, select the start and end dates, and then click the "Analyze" button.
|
71 |
+
The chart below will display the price action with overlays for moving averages, support and resistance levels, and buy/sell signals based on VSA analysis.
|
72 |
+
''')
|
73 |
+
else:
|
74 |
+
st.error('No data found for the selected ticker and date range.')
|
75 |
+
|