Next commited on
Commit
8d8a026
Β·
verified Β·
1 Parent(s): c270adf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -104
app.py CHANGED
@@ -1,111 +1,10 @@
1
  import gradio as gr
2
  import os
3
 
4
- weight_root = os.getenv("weight_root")
5
- weight_uvr5_root = os.getenv("weight_uvr5_root")
6
- index_root = os.getenv("index_root")
7
-
8
-
9
- names = []
10
- for name in os.listdir(weight_root):
11
- if name.endswith(".pth"):
12
- names.append(name)
13
- index_paths = []
14
- for root, dirs, files in os.walk(index_root, topdown=False):
15
- for name in files:
16
- if name.endswith(".index") and "trained" not in name:
17
- index_paths.append("%s/%s" % (root, name))
18
-
19
-
20
- def change_choices():
21
- names = []
22
- for name in os.listdir(weight_root):
23
- if name.endswith(".pth"):
24
- names.append(name)
25
- index_paths = []
26
- for root, dirs, files in os.walk(index_root, topdown=False):
27
- for name in files:
28
- if name.endswith(".index") and "trained" not in name:
29
- index_paths.append("%s/%s" % (root, name))
30
- audios = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))]
31
-
32
- return {"choices": sorted(names), "__type__": "update"}, {"choices": sorted(index_paths),"__type__": "update"},{
33
- "choices": sorted(audios), "__type__": "update"
34
- }
35
 
36
 
 
 
37
 
38
- def paths_for_files(path):
39
- return [os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
40
 
41
- with gr.Blocks(title="πŸ”Š", theme=gr.themes.Base(primary_hue="rose", neutral_hue="zinc")) as app:
42
- with gr.Tabs():
43
- with gr.TabItem("Inference"):
44
- voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names))
45
- refresh_button = gr.Button("Refresh", variant="primary")
46
- spk_item = gr.Slider(minimum=0, maximum=2333, step=1, label="Speaker ID", value=0, visible=False, interactive=True)
47
- vc_transform0 = gr.Number(label="Pitch", value=0)
48
- but0 = gr.Button(value="Convert", variant="primary")
49
- dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
50
- record_button = gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
51
- input_audio0 = gr.Dropdown(label="Input Path", value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '', choices=paths_for_files('audios'), allow_custom_value=True)
52
- audio_player = gr.Audio()
53
- input_audio0.change(fn=lambda path: {"value": path, "__type__": "update"} if os.path.exists(path) else None, inputs=[input_audio0], outputs=[audio_player])
54
- record_button.stop_recording(fn=lambda audio: audio, inputs=[record_button], outputs=[input_audio0])
55
- dropbox.upload(fn=lambda audio: audio.name, inputs=[dropbox], outputs=[input_audio0])
56
- with gr.Accordion("Change Index", open=False):
57
- file_index2 = gr.Dropdown(label="Change Index", choices=sorted(index_paths), interactive=True, value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else '')
58
- index_rate1 = gr.Slider(minimum=0, maximum=1, label="Index Strength", value=0.5, interactive=True)
59
- vc_output2 = gr.Audio(label="Output")
60
- with gr.Accordion("General Settings", open=False):
61
- f0method0 = gr.Radio(label="Method", choices=["pm", "harvest", "crepe", "rmvpe"] if config.dml == False else ["pm", "harvest", "rmvpe"], value="rmvpe", interactive=True)
62
- filter_radius0 = gr.Slider(minimum=0, maximum=7, label="Breathiness Reduction (Harvest only)", value=3, step=1, interactive=True)
63
- resample_sr0 = gr.Slider(minimum=0, maximum=48000, label="Resample", value=0, step=1, interactive=True, visible=False)
64
- rms_mix_rate0 = gr.Slider(minimum=0, maximum=1, label="Volume Normalization", value=0, interactive=True)
65
- protect0 = gr.Slider(minimum=0, maximum=0.5, label="Breathiness Protection (0 is enabled, 0.5 is disabled)", value=0.33, step=0.01, interactive=True)
66
- if voice_model is not None:
67
- vc.get_vc(voice_model.value, protect0, protect0)
68
- file_index1 = gr.Textbox(label="Index Path", interactive=True, visible=False)
69
- refresh_button.click(fn=change_choices, inputs=[], outputs=[voice_model, file_index2], api_name="infer_refresh")
70
- refresh_button.click(fn=lambda: {"choices": paths_for_files('audios'), "__type__": "update"}, inputs=[], outputs=[input_audio0])
71
- refresh_button.click(fn=lambda: {"value": paths_for_files('audios')[0], "__type__": "update"} if len(paths_for_files('audios')) > 0 else {"value": "", "__type__": "update"}, inputs=[], outputs=[input_audio0])
72
- f0_file = gr.File(label="F0 Path", visible=False)
73
- vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!", visible=False)
74
- but0.click(vc.vc_single, [spk_item, input_audio0, vc_transform0, f0_file, f0method0, file_index1, file_index2, index_rate1, filter_radius0, resample_sr0, rms_mix_rate0, protect0], [vc_output1, vc_output2], api_name="infer_convert")
75
- voice_model.change(fn=vc.get_vc, inputs=[voice_model, protect0, protect0], outputs=[spk_item, protect0, protect0, file_index2, file_index2], api_name="infer_change_voice")
76
- with gr.TabItem("Download Models"):
77
- url_input = gr.Textbox(label="URL to model", value="", placeholder="https://...", scale=6)
78
- name_output = gr.Textbox(label="Save as", value="", placeholder="MyModel", scale=2)
79
- url_download = gr.Button(value="Download Model", scale=2)
80
- url_download.click(inputs=[url_input, name_output], outputs=[url_input], fn=download_from_url)
81
- model_browser = gr.Dropdown(choices=list(model_library.models.keys()), label="OR Search Models (Quality UNKNOWN)", scale=5)
82
- download_from_browser = gr.Button(value="Get", scale=2)
83
- download_from_browser.click(inputs=[model_browser], outputs=[model_browser], fn=lambda model: download_from_url(model_library.models[model], model))
84
- with gr.TabItem("Train"):
85
- training_name = gr.Textbox(label="Name your model", value="My-Voice", placeholder="My-Voice")
86
- np7 = gr.Slider(minimum=0, maximum=config.n_cpu, step=1, label="Number of CPU processes used to extract pitch features", value=int(np.ceil(config.n_cpu / 1.5)), interactive=True)
87
- sr2 = gr.Radio(label="Sampling Rate", choices=["40k", "32k"], value="32k", interactive=True, visible=False)
88
- if_f0_3 = gr.Radio(label="Will your model be used for singing? If not, you can ignore this.", choices=[True, False], value=True, interactive=True, visible=False)
89
- version19 = gr.Radio(label="Version", choices=["v1", "v2"], value="v2", interactive=True, visible=False)
90
- easy_uploader.upload(fn=lambda folder: os.makedirs(folder, exist_ok=True), inputs=[dataset_folder], outputs=[])
91
- easy_uploader.upload(fn=lambda files, folder: [shutil.copy2(f.name, os.path.join(folder, os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'), inputs=[easy_uploader, dataset_folder], outputs=[])
92
- gpus6 = gr.Textbox(label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)", value=gpus, interactive=True, visible=F0GPUVisible)
93
- gpu_info9 = gr.Textbox(label="GPU Info", value=gpu_info, visible=F0GPUVisible)
94
- spk_id5 = gr.Slider(minimum=0, maximum=4, step=1, label="Speaker ID", value=0, interactive=True, visible=False)
95
- f0method8 = gr.Radio(label="F0 extraction method", choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"], value="rmvpe_gpu", interactive=True)
96
- gpus_rmvpe = gr.Textbox(label="GPU numbers to use separated by -, (e.g. 0-1-2)", value="%s-%s" % (gpus, gpus), interactive=True, visible=F0GPUVisible)
97
- f0method8.change(fn=change_f0_method, inputs=[f0method8], outputs=[gpus_rmvpe])
98
- but1 = gr.Button("1. Process", variant="primary")
99
- info1 = gr.Textbox(label="Information", value="", visible=True)
100
- but1.click(preprocess_dataset, [dataset_folder, training_name, sr2, np7], [info1], api_name="train_preprocess")
101
- but2 = gr.Button("2. Extract Features", variant="primary")
102
- info2 = gr.Textbox(label="Information", value="", max_lines=8)
103
- but2.click(extract_f0_feature, [gpus6, np7, f0method8, if_f0_3, gpus_rmvpe, version19, dataset_folder], [info2], api_name="train_extract_features")
104
- but3 = gr.Button("3. Train", variant="primary")
105
- info3 = gr.Textbox(label="Information", value="", max_lines=8)
106
- but3.click(train_index, [gpus6, np7, f0method8, version19, dataset_folder, spk_id5], [info3], api_name="train_model")
107
- but4 = gr.Button("4. Extract Feature", variant="primary")
108
- info4 = gr.Textbox(label="Information", value="", max_lines=8)
109
- but4.click(extract_feature, [gpus6, np7, f0method8, version19, dataset_folder, spk_id5], [info4], api_name="train_extract_feature")
110
-
111
- app.queue(concurrency_count=3, max_size=20).launch()
 
1
  import gradio as gr
2
  import os
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
 
6
+ with gr.Blocks(title="πŸ”Š", theme=gr.themes.Base(primary_hue="rose", neutral_hue="zinc")) as app:
7
+ input_audio0 = gr.Chekbox(label="Input Path", choise["1", "2"])
8
 
 
 
9
 
10
+ app.launch()