File size: 6,598 Bytes
2aacf30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import io
import pickle
import regex
import streamlit as st
import plotly.express as px
import numpy as np
import pandas as pd
import torch
from utils.seqIo import seqIo_reader
import pandas as pd
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, AutoModel
from tqdm import tqdm
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, generate_embeddings_stream_io

# --server.maxUploadSize 3000

def get_unique_labels(label_list: list[str]):
    label_set = set()
    for label in label_list:
        individual_labels = label.split('||')
        for individual_label in individual_labels:
            label_set.add(individual_label)
    return list(label_set)

@st.cache_data
def get_train_test_split(train_embeds, numerical_labels, test_size=0.05, random_state=42):
    return train_test_split(train_embeds, numerical_labels, test_size=test_size, random_state=random_state)

@st.cache_resource
def train_model(X_train, y_train, random_state=42):
    # Train SVM Classifier
    svm_clf = SVC(kernel='rbf', random_state=random_state, probability=True, verbose=True)
    svm_clf.fit(X_train, y_train)
    return svm_clf

def pickle_model(model):
    pickled = io.BytesIO()
    pickle.dump(model, pickled)
    return pickled

if "embeddings_df_train" not in st.session_state:
    st.session_state.embeddings_df_train = None

if "svm_clf" not in st.session_state:
    st.session_state.svm_clf = None
    st.session_state.report_df = None
    st.session_state.accuracy = None

st.title('batik: frame classifier training')

st.text("Upload files to train classifier on.")
with st.form('embedding_generation_settings'):
    seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
    annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
    downsample_rate = st.number_input('Downsample Rate',value=4)
    submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')

st.markdown("**(Optional)** Upload embeddings.")
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])

if submit_embed_settings and seq_file is not None and annot_files is not None:
    video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
                                                                "SLIP",
                                                                downsample_rate,
                                                                False)
    
    fnames = [seq_file.name]
    embeddings_df = create_embeddings_csv_io(out="file",
                                fnames=fnames,
                                embeddings=video_embeddings,
                                frames=video_frames,
                                annotations=[annot_files],
                                test_fnames=None,
                                views=None,
                                conditions=None,
                                downsample_rate=downsample_rate)
    st.session_state.embeddings_df_train = embeddings_df

elif embeddings_csv is not None:
    embeddings_df = pd.read_csv(embeddings_csv)
    st.session_state.embeddings_df_train = embeddings_df
else:
    st.text('Please upload file(s).')

st.divider()

if st.session_state.embeddings_df_train is not None:
    st.subheader("specify dataset preprocessing options")
    st.text("Select frames with label(s) to include:")

    with st.form('train_settings'):
        label_list = st.session_state.embeddings_df_train['Label'].to_list()
        unique_label_list = get_unique_labels(label_list)
        specified_classes = st.multiselect("Label(s) included:", options=unique_label_list)

        st.text("Select label(s) that should be removed:")
        classes_to_remove = st.multiselect("Label(s) excluded:", options=unique_label_list)

        max_class_size = st.number_input("(Optional) Specify max class size:", value=None)

        shuffle_data = st.toggle("Shuffle data:")

        train_model_clicked = st.form_submit_button("Train Model")

    if train_model_clicked:
        kwargs = {'embeddings_df' : st.session_state.embeddings_df_train, 
                'specified_classes' : specified_classes,
                'classes_to_remove' : classes_to_remove,
                'max_class_size' : max_class_size,
                'animal_state' : None,
                'view' : None,
                'shuffle_data' : shuffle_data,
                'test_videos' : None}
        train_embeds, train_labels, train_images, _, _, _ = process_dataset_in_mem(**kwargs)
        # Convert labels to numerical values
        label_to_appear_first = 'other'
        unique_labels = set(train_labels)
        unique_labels.discard(label_to_appear_first)

        label_to_index = {label_to_appear_first: 0}

        label_to_index.update({label: idx + 1 for idx, label in enumerate(unique_labels)})
        index_to_label = {idx: label for label, idx in label_to_index.items()}
        numerical_labels = np.array([label_to_index[label] for label in train_labels])

        print("Label Valence: ", label_to_index)
        # Split data into train and test sets
        X_train, X_test, y_train, y_test = get_train_test_split(train_embeds, numerical_labels, test_size=0.05, random_state=42)
        with st.spinner("Model training in progress..."):
            svm_clf = train_model(X_train, y_train)

        # Predict on the test set
        with st.spinner("In progress..."):
            y_pred = svm_clf.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        report = classification_report(y_test, y_pred, target_names=[index_to_label[idx] for idx in range(len(label_to_index))], output_dict=True)
        report_df = pd.DataFrame(report).transpose()

        # save results to session state
        st.session_state.svm_clf = svm_clf
        st.session_state.report_df = report_df
        st.session_state.accuracy = accuracy
    
    if st.session_state.svm_clf is not None:
        pickled_model = pickle_model(st.session_state.svm_clf)

        st.text(f"Eval Accuracy: {st.session_state.accuracy}")
        st.subheader("Classification Report:")
        st.dataframe(st.session_state.report_df)

        st.download_button("Download model as .pkl file",
                           data=pickled_model,
                           file_name=f"{'_'.join(specified_classes)}_classifier.pkl")