File size: 8,844 Bytes
ed29c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""File for loading data into AnimalEditor"""
import io
from random import random
from os.path import splitext
from collections import OrderedDict
import numpy as np
from tempfile import NamedTemporaryFile

from .annot import Annotations
from .behavior import Behaviors

def has_extension(fname:str, extension:str|list[str]) -> bool:
    """

    Checks to see if the passed in file name ends with an expected extension.

    """
    _, ext = splitext(fname)
    if isinstance(extension, str):
        return ext == extension
    elif isinstance(extension, list):
        return ext in extension

def _clean_annotations(annotations):
    """

    While reading in behaviors from an .annot file, sometimes channels without normally

    callable keys appear (i.e. keys that are strings which name a behavior), thus this

    code only accepts keys which are strings.

    """
    if not annotations:
        raise ValueError('No annotations found.')
    clean_annot = OrderedDict()
    for channel in annotations.keys():
        channel_dict = OrderedDict()
        for behavior_name in annotations[channel].keys():
            if isinstance(behavior_name, str):
                channel_dict.update({behavior_name : annotations[channel][behavior_name]})
        clean_annot.update({channel: channel_dict})
    return clean_annot

def load_annot_sheet_txt(fname, offset = 0):
    """

    Generated a dictionary for retrieving the beginning and end frames of behaviors from

    an .annot file.



    Note that 0:00:00 is frame 1



    Args:

        fname       - the path to the .annot file to be read (must be Caltech format)\n

        offset      - a value which offsets the start and end frame of each bout in

                      the sheet, as well as the absolute start and end frame of the file.

                      This value is optional, and is set to 0 by default



    Returns:

        annotations - dictionary of beginning and end frames for behaviors\n

        start_time  - the frame the movie started at (0:00:00 is 1)\n

        end_time    - the frame the movie ended at (0:00:00 is 1)\n

        sample_rate - the sample rate reported within the file

    """
    # from bento for python
    behaviors   = Behaviors()
    annot_sheet = Annotations(behaviors)
    annot_sheet.read(fname)

    sample_rate = annot_sheet.sample_rate()
    annotations = OrderedDict()
    for key in annot_sheet.channel_names():
        annot_behaviors = OrderedDict()
        bout_names      = set()
        for bout in annot_sheet.channel(key): #._bouts_by_start:
            bout_names.add(bout.name())
        for name in bout_names:
            annot_behaviors.update({name : []})
        for bout in annot_sheet.channel(key): #._bouts_by_start:
            start_frame = bout.start().frames + offset
            end_frame   = bout.end().frames + offset
            bout_frames = [start_frame, end_frame]
            curr_table  = annot_behaviors.get(bout.name())
            new_table   = curr_table.append(bout_frames)
            annot_behaviors.update({bout.name : new_table})
        for name in bout_names:
            curr_table  = annot_behaviors.get(name)
            beh_array   = np.array(curr_table)
            annot_behaviors.update({name : beh_array})

        annotations.update({key : annot_behaviors})
    annotations = _clean_annotations(annotations)
    start_time = annot_sheet.start_frame() + offset
    end_time   = annot_sheet.end_frame() + offset
    return annotations, start_time, end_time, sample_rate

def load_multiple_annotations(fnames):
    """

    Generates a single dictionary given multiple .annot files.

    """
    if not isinstance(fnames, list):
        raise TypeError(f'Expected list[str], got {type(fnames)} instead.')
    if not fnames:
        raise ValueError('No file names passed in.')
    if len(fnames) == 1:
        return load_annot_sheet_txt(fnames[0])
    head_annot, head_start_frame, head_end_frame, sample_rate = load_annot_sheet_txt(fnames[0])
    end_frame = head_end_frame
    for fname in fnames[1:]:
        curr_annot, _, curr_end_frame, _ = load_annot_sheet_txt(fname, end_frame)
        end_frame = curr_end_frame
        for channel in curr_annot.keys():
            if channel not in head_annot:
                channel_dict = {}
                head_annot.update({channel : channel_dict})
            for behavior in curr_annot[channel].keys():
                curr_behavior_bout_array = curr_annot[channel][behavior]
                if channel in head_annot and behavior in head_annot[channel]:
                    new_bout_array = np.vstack((head_annot[channel][behavior],
                                                curr_behavior_bout_array))
                else:
                    new_bout_array = curr_behavior_bout_array
                head_annot[channel].update({behavior : new_bout_array})
    return head_annot, head_start_frame, end_frame, sample_rate

def load_annot_sheet_txt_io(uploaded_file, offset = 0):
    """

    Generated a dictionary for retrieving the beginning and end frames of behaviors from

    an .annot file.



    Note that 0:00:00 is frame 1



    Args:

        fname       - the path to the .annot file to be read (must be Caltech format)\n

        offset      - a value which offsets the start and end frame of each bout in

                      the sheet, as well as the absolute start and end frame of the file.

                      This value is optional, and is set to 0 by default



    Returns:

        annotations - dictionary of beginning and end frames for behaviors\n

        start_time  - the frame the movie started at (0:00:00 is 1)\n

        end_time    - the frame the movie ended at (0:00:00 is 1)\n

        sample_rate - the sample rate reported within the file

    """
    # from bento for python
    behaviors   = Behaviors()
    annot_sheet = Annotations(behaviors)
    
    annot_sheet.read_io(uploaded_file)

    sample_rate = annot_sheet.sample_rate()
    annotations = OrderedDict()
    for key in annot_sheet.channel_names():
        annot_behaviors = OrderedDict()
        bout_names      = set()
        for bout in annot_sheet.channel(key): #._bouts_by_start:
            bout_names.add(bout.name())
        for name in bout_names:
            annot_behaviors.update({name : []})
        for bout in annot_sheet.channel(key): #._bouts_by_start:
            start_frame = bout.start().frames + offset
            end_frame   = bout.end().frames + offset
            bout_frames = [start_frame, end_frame]
            curr_table  = annot_behaviors.get(bout.name())
            new_table   = curr_table.append(bout_frames)
            annot_behaviors.update({bout.name : new_table})
        for name in bout_names:
            curr_table  = annot_behaviors.get(name)
            beh_array   = np.array(curr_table)
            annot_behaviors.update({name : beh_array})

        annotations.update({key : annot_behaviors})
    annotations = _clean_annotations(annotations)
    start_time = annot_sheet.start_frame() + offset
    end_time   = annot_sheet.end_frame() + offset
    return annotations, start_time, end_time, sample_rate

def load_multiple_annotations_io(uploaded_files):
    """

    Generates a single dictionary given multiple .annot files.

    """
    if not isinstance(uploaded_files, list):
        raise TypeError(f'Expected list, got {type(uploaded_files)} instead.')
    if not uploaded_files:
        raise ValueError('No file names passed in.')
    if len(uploaded_files) == 1:
        return load_annot_sheet_txt_io(uploaded_files[0])
    head_annot, head_start_frame, head_end_frame, sample_rate = load_annot_sheet_txt_io(uploaded_files[0])
    end_frame = head_end_frame
    for uploaded_file in uploaded_files[1:]:
        curr_annot, _, curr_end_frame, _ = load_annot_sheet_txt_io(uploaded_file, end_frame)
        end_frame = curr_end_frame
        for channel in curr_annot.keys():
            if channel not in head_annot:
                channel_dict = {}
                head_annot.update({channel : channel_dict})
            for behavior in curr_annot[channel].keys():
                curr_behavior_bout_array = curr_annot[channel][behavior]
                if channel in head_annot and behavior in head_annot[channel]:
                    new_bout_array = np.vstack((head_annot[channel][behavior],
                                                curr_behavior_bout_array))
                else:
                    new_bout_array = curr_behavior_bout_array
                head_annot[channel].update({behavior : new_bout_array})
    return head_annot, head_start_frame, end_frame, sample_rate