File size: 14,969 Bytes
ed29c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""Provides the standard data processing functions performed on CNMFe and annotation data"""
import numpy as np
from scipy.signal import correlate
from scipy.stats import zscore

def smooth(data: np.ndarray, window_size=5):
    """

    Returns a smoothed version of response data using a moving average filter.



    Parameters:

    ----------

    data : np.ndarray

        A numpy 1-D array containing data to be smoothed.

    window_size : int 

        Number of data points for calculating the smoothed value. If an even number is

        passed in, window_size is autmoatically reduced by 1.



    Returns:

    --------

    smooth_data : np.ndarray

        Smoothed data, returned as a 1-D array of the same size as ``data``.

    

    Notes:

    ------

    Implements MATLAB's smooth function.

    """
    if window_size == 0:
        raise ValueError('window_size can not be 0.')
    if window_size == 1:
        return data
    if window_size > data.size:
        window_size = data.size
    if window_size%2 == 0:
        window_size = window_size - 1
    outside_valid_window_size = int((window_size-1)/2)
    start = np.array([np.sum(data[0:(2*k+1)]/(2*k+1)) for k in range(outside_valid_window_size)])
    end   = np.array([np.sum(data[-(2*k+1):]/(2*k+1)) for k in range(outside_valid_window_size)])[::-1]
    smoothed_data = np.convolve(data,np.ones(window_size,dtype=int),'valid')/window_size
    return np.hstack((start,smoothed_data,end))

def corr(x: np.ndarray, y: np.ndarray):
    """

    Returns a matrix of the pairwise correlation coefficient between each pair of columns

    in the input matrices x and y.



    Parameters:

    -----------

    x : np.ndarray

        Input matrix, specified as an n x k_1 matrix. Its rows correspond to

        observations, and the columns correspond to variables.

    y : np.ndarray

        Input matrix, specified as an n x k_2 matrix. Its rows correspond to

        observations, and the columns correspond to variables.



    Returns:

    --------

    rho - Pairwise linear correlation coefficient, returned as a matrix.

    

    Notes:

    ------

    Implements MATLAB's corr function.

    """
    return np.corrcoef(x,y)[0][1]

def autocorr(x:np.ndarray,

             max_lags=10):
    """

    Returns the correlations and associated lags of the univariate time series x.



    Parameters:

    -----------

    x : np.ndarray

        Observed univariate time series.

    max_lags : int 

        Number of lags, specified as a positive integer.



    Returns:

    acf : np.ndarray

        Correlations, returned as a numeric vector of length ``max_lags`` + 1.

    lags : np.ndarray

        Autocorrelation lags.



    Notes:

    ------

    Modified version of matplotlib's acorr function.

    """
    Nx = len(x)

    correls = correlate(x, x, mode="full")
    correls = correls / np.dot(x, x)

    if max_lags is None:
        max_lags = Nx - 1

    if max_lags >= Nx or max_lags < 1:
        raise ValueError('maxlags must be None or strictly '
                            'positive < %d' % Nx)

    lags = np.arange(-max_lags, max_lags + 1)
    acf = correls[Nx - 1 - max_lags:Nx + max_lags]

    return acf, lags

def convert_to_rast(behavior_ts, time_max):
    """

    Converts a list of behavior time stamps to a one-hot vector where 0 indicates no

    presence of the given behavior, and 1 indicates presence of it.



    Args:

        behavior_ts   - a list of time stamps (start and end) for a particular behavior\n

        time_max      - the length in frames of the vector

    

    Returns:

        behavior_rast - a one-hot vector

    """
    behavior_rast = np.zeros(time_max)
    for time_stamps in behavior_ts:
        start = int(round(time_stamps[0]))
        end   = int(round(time_stamps[1] + 1))
        if start > time_max:
            break
        if end > time_max:
            end = time_max
        np.put(behavior_rast,range(start,end),np.ones(end-start))
    return behavior_rast

def convert_to_raster(bouts: list,

                      neural_activity_sr: float,

                      observation_sr: float,

                      max_frame: int):
    """

    Converts bouts into a behavior raster, a one hot encoding of a behavior describing

    when it is active.



    It is often the case that the start and stop timestamps found in ``bouts`` are

    collected at a different sample rate than ``neural_activity``, which are often what

    behavior rasters align to. In order to align the two, a ratio between the sample

    rates of ``neural_activity`` and the bouts of behavior, which are observations,

    is calculated and then multiplied to the timestamps.



    Parameters:

    -----------

    bouts : np.ndarray

        An array where each element is a pair of integers where the first integer denotes

        the beginning of a bout of behavior, and the second integer denotes the end of

        the bout.

    neural_activity_sr : float

        Sample rate of ``neural_activity``.

    observation_sr : float

        Sample rate for the ``bouts`` used.

    max_frame : int

        The length of the behavior raster, often set to the number of frames of

        ``neural_activity``.

    

    Returns:

    --------

    behavior_raster : np.ndarray

        A raster (a one hot encoding) of a behavior, describing when it is active.

    """
    sr_ratio             = neural_activity_sr/observation_sr
    behavior_ts_adjusted = bouts*sr_ratio
    behavior_raster      = np.zeros(max_frame)
    for time_stamps in behavior_ts_adjusted:
        start = int(round(time_stamps[0]))
        end   = int(round(time_stamps[1] + 1))
        if start > max_frame:
            break
        if end > max_frame:
            end = max_frame
        np.put(behavior_raster,range(start,end),np.ones(end-start))
    return behavior_raster

def convert_to_bouts(behavior_raster: np.ndarray):
    """

    Converts a behavior raster into behavior bouts, an array where each element is a

    pair of timestamps (int) where the first timestamp denotes the beginning of a bout of

    behavior, and the second timestamp denotes the end of the bout.



    Parameters:

    -----------

    behavior_raster : np.ndarray

        A raster (a one hot encoding) of a behavior, describing when it is active.



    Returns:

    --------

    bouts : np.ndarray

        An array where each element is a pair of timestamps (int) where the first

        timestamp denotes the beginning of a bout of behavior, and the second timestamp

        denotes the end of the bout.

    """
    dt = behavior_raster[1:] - behavior_raster[:-1]
    start = np.where(dt==1)[0] + 1
    stop  = np.where(dt==-1)[0]
    if behavior_raster[0]:
        start = np.concatenate((np.array([0]),start))
    if behavior_raster[-1]:
        stop = np.concatenate((stop,[behavior_raster.size]))
    bouts = np.hstack((np.reshape(start,(len(start),1)),
                       np.reshape(stop,(len(stop),1))))
    return bouts

def merge_rasters_down(behavior_raster_array: np.ndarray)-> np.ndarray:
    """

    For a behavior raster, merges down all rasters to one array in such a way that no

    two behaviors are occuring at the same time.



    It determines which behavior should remain 'on top' by determening which behavior

    has the least amount of active frames.



    This method should only be used on behavior rasters where all behaviors come from a

    single channel.



    Parameters:

    -----------

    behavior_raster_array : np.ndarray

        An array where each row is a behavior raster, a one hot encoding of behaviors,

        describing when that behavior is active. Each row of this array must use a

        different value to indicate that a behavior is active (for example, if one

        row uses 1s, another row must not use 1 as well).

    

    Returns:

    --------

    single_track : np.ndarray

        An array which is the length of a behavior raster in ``behavior_raster_array``,

        where each entry is either 0 indicating that no behavior is active, or a value

        indicating that a specific behavior is active.

    """
    # single track
    single_track = np.zeros((1,behavior_raster_array.shape[1]))

    # determine order to insert row values
    num_active_frames = [np.sum(np.where(row > 0, 1, 0)) for row in behavior_raster_array]

    for i in range(behavior_raster_array.shape[0]):
        max_i = np.argmax(num_active_frames)
        num_active_frames[max_i] = -1

        unique_values = np.unique(behavior_raster_array[max_i])
        if len(unique_values) > 1: value = unique_values[1]
        else: value = 0
        active_inds = np.where(behavior_raster_array[max_i] == value)[0]

        single_track[:,active_inds] = value
    return single_track

def separate_tracks(single_track: np.ndarray,

                    behavior_values: list):
    """

    For a single track, separates each unique value (except for 0) into its own raster

    within a 2-D array.



    Parameters:

    -----------

    single_track : np.ndarray

        An array which is the length of a behavior raster in ``behavior_raster_array``,

        where each entry is either 0 indicating that no behavior is active, or a value

        indicating that a specific behavior is active.

    behavior_values : list

        A list of values corresponding to the specific behaviors within ``single_track``.

    

    Returns:

    --------

    behavior_raster_array : np.ndarray

        An array where each row is a behavior raster, a one hot encoding of behaviors,

        describing when that behavior is active.

    """
    if len(behavior_values) < np.unique(single_track).size - 1:
        raise KeyError("There are not sufficient values within ``behavior_values`` to "
                       "accomodate those present in ``single_track``.")
    tracks = []
    for value in behavior_values:
        tracks.append(np.where(single_track == value, value, 0))
    return np.vstack(tracks)

def config_neural_activity(config: dict, neural_activity: np.ndarray):
    """

    Configures `neural_activity` according to parameters set in config.



    Parameters:

    -----------

    config : dict

        A dictionary which specifies the following parameters: 'smooth_window',

        'baseline_frame', and 'zscore_method'. 'zscore_method' is one of "All Data",

        "Baseline", or "No Z-Score".

    neural_activity : np.ndarray

        Neural activity being used.

    

    Returns:

    --------

    mod_neural_activity : np.ndarray

        Modified `neural_activity`, accodring to `config`.

    """
    smooth_window  = config['smooth_window']
    zscore_method  = config['zscore_method']
    baseline_frame = config['baseline_frame']

    # smooth
    if len(neural_activity.shape) > 1:
        neural_data_smooth = np.zeros(neural_activity.shape)
        for i in range(neural_activity.shape[0]):
            neural_data_smooth[i] = smooth(neural_activity[i], int(smooth_window))
        mod_neural_activity = neural_data_smooth
    else:
        mod_neural_activity = smooth(neural_activity, int(smooth_window))

    # z-score
    if zscore_method == 'Baseline' and (not baseline_frame is None or baseline_frame == 0):
        if len(neural_activity.shape)> 1:
            mean = mod_neural_activity[:,:baseline_frame].mean(axis=1,keepdims=True)
            std  = mod_neural_activity[:,:baseline_frame].std(axis=1,keepdims=True)
        else:
            mean = mod_neural_activity[:baseline_frame].mean()
            std  = mod_neural_activity[:baseline_frame].std()
        mod_neural_activity = (mod_neural_activity - mean) / std
    elif zscore_method == 'No Z-Score':
        mod_neural_activity = mod_neural_activity
    else:
        if len(neural_activity.shape) > 1:
            mod_neural_activity = zscore(mod_neural_activity,axis=1)
        else:
            mod_neural_activity = zscore(mod_neural_activity)
    return mod_neural_activity

def compress_annotations(annot: dict, downsample_rate: int, max_frame: int)-> dict:
    """

    Takes in an annotation dictionary and creates a single raster per channel, where the

    raster contains the behaviors from their respective channel.



    annot : dict

        Dictionary of beginning and end frames for behaviors.

    downsample_rate : int

        The rate at which samples should be taken. Divides bout timing (in frames) by

        value.

    max_frame : int

        The last frame for annotations from `annot`.

    """
    annot_single_track = {}
    channel_behavior_map = {}
    for channel in annot:
        channel_rasters = []
        behavior_map = {}
        behavior_map.update({0: 'None'})
        for i, behavior in enumerate(annot[channel]):
            bouts = annot[channel][behavior]
            raster = convert_to_raster(bouts, 1, downsample_rate, max_frame)
            channel_rasters.append(raster*(i+1))
            behavior_map.update({(i+1) : behavior})
        channel_raster = merge_rasters_down(np.array(channel_rasters))[0]
        annot_single_track.update({channel : channel_raster})
        channel_behavior_map.update({channel : behavior_map})
    return annot_single_track, channel_behavior_map

def compress_compressed_annotations(annot_single_track: dict,

                                    channel_behavior_map: dict,

                                    max_frame: int):
    """

    Further compresses the results from `compress_annotations` to get a single array

    where each entry is a list of the behaviors present at that frame across all channels.

    """
    labels = []
    for frame in range(max_frame):
        labels_at_frame = []
        for channel in annot_single_track:
            channel_raster = annot_single_track[channel]
            behavior_map = channel_behavior_map[channel]
            behavior_value = int(channel_raster[frame])
            behavior_label = behavior_map.get(behavior_value)
            labels_at_frame.append(behavior_label)
        labels.append('||'.join(labels_at_frame))
    return labels

def generate_label_array(annot: dict,

                         downsample_rate: int,

                         max_frame: int)-> list[str]:
    """

    Generates an array of lists of labels, where each entry is a video frame, and the

    labels come from each channel in `annot`.

    """
    annot_single_track,\
    channel_behavior_map = compress_annotations(annot, downsample_rate, max_frame)
    labels = compress_compressed_annotations(annot_single_track,
                                             channel_behavior_map,
                                             max_frame)
    return labels