Spaces:
Sleeping
Sleeping
update files with fixes
Browse files- apply_model.py +7 -5
- explore.py +2 -2
- get_llava_response.py +2 -2
- train_model.py +2 -2
apply_model.py
CHANGED
@@ -60,7 +60,7 @@ st.title('batik: frame classifier')
|
|
60 |
|
61 |
st.text("Upload files to apply trained classifier on.")
|
62 |
with st.form('embedding_generation_settings'):
|
63 |
-
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4']
|
64 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
65 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
66 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
@@ -118,12 +118,14 @@ if st.session_state.embeddings_df is not None and svm_clf is not None:
|
|
118 |
apply_model = st.form_submit_button("Apply Model")
|
119 |
|
120 |
if apply_model:
|
121 |
-
if 'Test' in st.session_state.embeddings_df
|
122 |
-
test_videos = True
|
123 |
-
elif 'Images' in st.session_state.embeddings_df.index:
|
124 |
test_videos = True
|
125 |
else:
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
128 |
'specified_classes' : specified_classes,
|
129 |
'classes_to_remove' : None,
|
|
|
60 |
|
61 |
st.text("Upload files to apply trained classifier on.")
|
62 |
with st.form('embedding_generation_settings'):
|
63 |
+
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
64 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
65 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
66 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
|
|
118 |
apply_model = st.form_submit_button("Apply Model")
|
119 |
|
120 |
if apply_model:
|
121 |
+
if 'Test' in st.session_state.embeddings_df:
|
|
|
|
|
122 |
test_videos = True
|
123 |
else:
|
124 |
+
print(f'shape of df: {st.session_state.embeddings_df.shape[0]}')
|
125 |
+
test_videos_array = [True for i in range(st.session_state.embeddings_df.shape[0])]
|
126 |
+
st.session_state.embeddings_df['Test'] = test_videos_array
|
127 |
+
test_videos = True
|
128 |
+
|
129 |
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
130 |
'specified_classes' : specified_classes,
|
131 |
'classes_to_remove' : None,
|
explore.py
CHANGED
@@ -177,7 +177,7 @@ st.subheader("generate or import embeddings")
|
|
177 |
|
178 |
st.text("Upload files to generate embeddings.")
|
179 |
with st.form('embedding_generation_settings'):
|
180 |
-
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4']
|
181 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
182 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
183 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
@@ -211,7 +211,7 @@ else:
|
|
211 |
st.divider()
|
212 |
st.subheader("provide video file if not yet already provided")
|
213 |
|
214 |
-
uploaded_file = st.file_uploader("Choose a video file", type=['seq', 'mp4']
|
215 |
|
216 |
st.divider()
|
217 |
if st.session_state.embeddings_df is not None and (uploaded_file is not None or seq_file is not None):
|
|
|
177 |
|
178 |
st.text("Upload files to generate embeddings.")
|
179 |
with st.form('embedding_generation_settings'):
|
180 |
+
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
181 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
182 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
183 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
|
|
211 |
st.divider()
|
212 |
st.subheader("provide video file if not yet already provided")
|
213 |
|
214 |
+
uploaded_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
215 |
|
216 |
st.divider()
|
217 |
if st.session_state.embeddings_df is not None and (uploaded_file is not None or seq_file is not None):
|
get_llava_response.py
CHANGED
@@ -47,8 +47,8 @@ def load_llava_checkpoint_hf(model_path, hf_token):
|
|
47 |
bnb_4bit_use_double_quant=True,
|
48 |
bnb_4bit_quant_type='nf4'
|
49 |
)
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
51 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
52 |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
53 |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
54 |
if mm_use_im_patch_token:
|
|
|
47 |
bnb_4bit_use_double_quant=True,
|
48 |
bnb_4bit_quant_type='nf4'
|
49 |
)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=hf_token)
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, token=hf_token, **kwargs)
|
52 |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
53 |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
54 |
if mm_use_im_patch_token:
|
train_model.py
CHANGED
@@ -35,7 +35,7 @@ def get_train_test_split(train_embeds, numerical_labels, test_size=0.05, random_
|
|
35 |
@st.cache_resource
|
36 |
def train_model(X_train, y_train, random_state=42):
|
37 |
# Train SVM Classifier
|
38 |
-
svm_clf = SVC(kernel='rbf', random_state=random_state, probability=True)
|
39 |
svm_clf.fit(X_train, y_train)
|
40 |
return svm_clf
|
41 |
|
@@ -56,7 +56,7 @@ st.title('batik: frame classifier training')
|
|
56 |
|
57 |
st.text("Upload files to train classifier on.")
|
58 |
with st.form('embedding_generation_settings'):
|
59 |
-
seq_file = st.file_uploader("Choose a
|
60 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
61 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
62 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
|
|
35 |
@st.cache_resource
|
36 |
def train_model(X_train, y_train, random_state=42):
|
37 |
# Train SVM Classifier
|
38 |
+
svm_clf = SVC(kernel='rbf', random_state=random_state, probability=True, verbose=True)
|
39 |
svm_clf.fit(X_train, y_train)
|
40 |
return svm_clf
|
41 |
|
|
|
56 |
|
57 |
st.text("Upload files to train classifier on.")
|
58 |
with st.form('embedding_generation_settings'):
|
59 |
+
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
60 |
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
61 |
downsample_rate = st.number_input('Downsample Rate',value=4)
|
62 |
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|