Spaces:
Sleeping
Sleeping
Update explore.py
Browse files- explore.py +337 -337
explore.py
CHANGED
@@ -1,337 +1,337 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import plotly.express as px
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import torch
|
6 |
-
from utils.mp4Io import mp4Io_reader
|
7 |
-
from utils.seqIo import seqIo_reader
|
8 |
-
import pandas as pd
|
9 |
-
from PIL import Image
|
10 |
-
from pathlib import Path
|
11 |
-
from transformers import AutoProcessor, AutoModel
|
12 |
-
from tempfile import NamedTemporaryFile
|
13 |
-
from tqdm import tqdm
|
14 |
-
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, generate_embeddings_stream_io
|
15 |
-
from get_llava_response import get_llava_response, load_llava_checkpoint_hf
|
16 |
-
from sklearn.manifold import TSNE
|
17 |
-
from openai import OpenAI
|
18 |
-
import cv2
|
19 |
-
import base64
|
20 |
-
from hdbscan import HDBSCAN, all_points_membership_vectors
|
21 |
-
import random
|
22 |
-
|
23 |
-
# --server.maxUploadSize 3000
|
24 |
-
REPO_NAME = 'ncoria/llava-lora-vicuna-clip-5-epochs-merge'
|
25 |
-
|
26 |
-
def load_llava_model(hf_token):
|
27 |
-
return load_llava_checkpoint_hf(REPO_NAME, hf_token)
|
28 |
-
|
29 |
-
def get_unique_labels(label_list: list[str]):
|
30 |
-
label_set = set()
|
31 |
-
for label in label_list:
|
32 |
-
individual_labels = label.split('||')
|
33 |
-
for individual_label in individual_labels:
|
34 |
-
label_set.add(individual_label)
|
35 |
-
return list(label_set)
|
36 |
-
|
37 |
-
SYSTEM_PROMPT = """You are a researcher studying mice interactions from videos of the inside of a resident
|
38 |
-
intruder box where there is either just the resident mouse (the black one) or the resident and the intruder mouse (the white one).
|
39 |
-
Your job is to answer questions about the behavior of the mice in the image given the context that each image is a frame of a continuous video.
|
40 |
-
Thus, you should use the visual information about the mice in the image to try to provide a detailed behavioral description of the image."""
|
41 |
-
|
42 |
-
@st.cache_resource
|
43 |
-
def get_io_reader(uploaded_file):
|
44 |
-
if uploaded_file.name[-3:]=='seq':
|
45 |
-
with NamedTemporaryFile(suffix="seq", delete=False) as temp:
|
46 |
-
temp.write(uploaded_file.getvalue())
|
47 |
-
sr = seqIo_reader(temp.name)
|
48 |
-
else:
|
49 |
-
with NamedTemporaryFile(suffix="mp4", delete=False) as temp:
|
50 |
-
temp.write(uploaded_file.getvalue())
|
51 |
-
sr = mp4Io_reader(temp.name)
|
52 |
-
return sr
|
53 |
-
|
54 |
-
def get_image(sr, frame_no: int):
|
55 |
-
image, _ = sr.getFrame(frame_no)
|
56 |
-
return image
|
57 |
-
|
58 |
-
@st.cache_data
|
59 |
-
def get_2d_embedding(embeddings: pd.DataFrame):
|
60 |
-
tsne = TSNE(n_jobs=4, n_components=2, random_state=42, perplexity=50)
|
61 |
-
embedding_2d = tsne.fit_transform(np.array(embeddings))
|
62 |
-
return embedding_2d
|
63 |
-
|
64 |
-
HDBSCAN_PARAMS = {
|
65 |
-
'min_samples': 1
|
66 |
-
}
|
67 |
-
|
68 |
-
@st.cache_data
|
69 |
-
def hdbscan_classification(umap_embeddings, embeddings_2d, cluster_range):
|
70 |
-
max_num_clusters = -np.infty
|
71 |
-
num_clusters = []
|
72 |
-
min_cluster_size = np.linspace(cluster_range[0], cluster_range[1], 4)
|
73 |
-
for min_c in min_cluster_size:
|
74 |
-
learned_hierarchy = HDBSCAN(
|
75 |
-
prediction_data=True, min_cluster_size=int(round(min_c * 0.01 *umap_embeddings.shape[0])),
|
76 |
-
cluster_selection_method='leaf' ,
|
77 |
-
**HDBSCAN_PARAMS).fit(umap_embeddings)
|
78 |
-
num_clusters.append(len(np.unique(learned_hierarchy.labels_)))
|
79 |
-
if num_clusters[-1] > max_num_clusters:
|
80 |
-
max_num_clusters = num_clusters[-1]
|
81 |
-
retained_hierarchy = learned_hierarchy
|
82 |
-
assignments = retained_hierarchy.labels_
|
83 |
-
assign_prob = all_points_membership_vectors(retained_hierarchy)
|
84 |
-
soft_assignments = np.argmax(assign_prob, axis=1)
|
85 |
-
retained_hierarchy.fit(embeddings_2d)
|
86 |
-
return retained_hierarchy, assignments, assign_prob, soft_assignments
|
87 |
-
|
88 |
-
def upload_image(frame: np.ndarray):
|
89 |
-
"""returns the file ID."""
|
90 |
-
_, encoded_image = cv2.imencode('.png', frame)
|
91 |
-
return base64.b64encode(encoded_image.tobytes()).decode('utf-8')
|
92 |
-
|
93 |
-
def ask_question_with_image_gpt(file_id, system_prompt, question, api_key):
|
94 |
-
"""Asks a question about the uploaded image."""
|
95 |
-
client = OpenAI(api_key=api_key)
|
96 |
-
|
97 |
-
if file_id != None:
|
98 |
-
response = client.chat.completions.create(
|
99 |
-
model="gpt-4o",
|
100 |
-
messages=[
|
101 |
-
{"role": "system", "content": system_prompt},
|
102 |
-
{"role": "user", "content": [
|
103 |
-
{"type": "text", "text": question},
|
104 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpg:base64, {file_id}"}}]
|
105 |
-
}
|
106 |
-
]
|
107 |
-
)
|
108 |
-
else:
|
109 |
-
response = client.chat.completions.create(
|
110 |
-
model="gpt-4o",
|
111 |
-
messages=[
|
112 |
-
{"role": "system", "content": system_prompt},
|
113 |
-
{"role": "user", "content": question}
|
114 |
-
]
|
115 |
-
)
|
116 |
-
return response.choices[0].message.content
|
117 |
-
|
118 |
-
def ask_question_with_image_llava(image, system_prompt, question,
|
119 |
-
tokenizer, model, image_processor):
|
120 |
-
outputs = get_llava_response([question],
|
121 |
-
[image],
|
122 |
-
system_prompt,
|
123 |
-
tokenizer,
|
124 |
-
model,
|
125 |
-
image_processor,
|
126 |
-
REPO_NAME,
|
127 |
-
stream_output=False)
|
128 |
-
return outputs[0]
|
129 |
-
|
130 |
-
def ask_summary_question(image_array, label_array, api_key):
|
131 |
-
# load llava model
|
132 |
-
tokenizer, model, image_processor = load_llava_model(hf_token)
|
133 |
-
|
134 |
-
# global variable
|
135 |
-
system_prompt = SYSTEM_PROMPT
|
136 |
-
|
137 |
-
# collect responses
|
138 |
-
responses = []
|
139 |
-
|
140 |
-
# create progress bar
|
141 |
-
j = 0
|
142 |
-
pbar_text = lambda j: f'Creating llava response {j}/{len(label_array)}.'
|
143 |
-
pbar = st.progress(0, text=pbar_text(0))
|
144 |
-
|
145 |
-
for i, image in enumerate(image_array):
|
146 |
-
label = label_array[i]
|
147 |
-
question = f"The frame is annotated by a human observer with the label: {label}. Give evidence for this label using the posture of the mice and their current behavior. "
|
148 |
-
question += "Also, designate a behavioral subtype of the given label that describes the current social interaction based on what you see about the posture of the mice and "\
|
149 |
-
"how they are positioned with respect to each other. Usually, the body parts (i.e., tail, genitals, face, body, ears, paws)"\
|
150 |
-
"of the mice that are closest to each other will give some clue. Please limit behavioral subtype to a 1-4 word phrase. limit your response to 4 sentences."
|
151 |
-
response = ask_question_with_image_llava(image, system_prompt, question,
|
152 |
-
tokenizer, model, image_processor)
|
153 |
-
responses.append(response)
|
154 |
-
# update progress bar
|
155 |
-
j += 1
|
156 |
-
pbar.progress(j/len(label_array), pbar_text(j))
|
157 |
-
|
158 |
-
system_prompt_summarize = "You are a researcher studying mice interactions from videos of the inside of a resident "\
|
159 |
-
"intruder box where there is either just the resident mouse (the black one) or the resident and the intruder mouse (the white one). "\
|
160 |
-
"You will be given a question about a list of descriptions from frames of these videos. "\
|
161 |
-
"Your job is to answer the question by focusing on the behaviors of the mice and their postures "\
|
162 |
-
"as well as any other aspects of the descriptions that may be relevant to the class label associated with them"
|
163 |
-
user_prompt_summarize = "Here are several descriptions of individual frames from a mouse behavior video. Please summarize these descriptions and provide a suggestion for a "\
|
164 |
-
"behavior label which captures what is described in the descriptions: \n\n"
|
165 |
-
user_prompt_summarize = user_prompt_summarize + '\n'.join(responses)
|
166 |
-
summary_response = ask_question_with_image_gpt(None, system_prompt_summarize, user_prompt_summarize, api_key)
|
167 |
-
return summary_response
|
168 |
-
|
169 |
-
if "embeddings_df" not in st.session_state:
|
170 |
-
st.session_state.embeddings_df = None
|
171 |
-
|
172 |
-
st.title('batik:
|
173 |
-
|
174 |
-
api_key = st.text_input("OpenAI API Key:","")
|
175 |
-
hf_token = st.text_input("HuggingFace Token:","")
|
176 |
-
st.subheader("generate or import embeddings")
|
177 |
-
|
178 |
-
st.text("Upload files to generate embeddings.")
|
179 |
-
with st.form('embedding_generation_settings'):
|
180 |
-
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
181 |
-
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
182 |
-
downsample_rate = st.number_input('Downsample Rate',value=4)
|
183 |
-
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
184 |
-
|
185 |
-
st.markdown("**(Optional)** Upload embeddings.")
|
186 |
-
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])
|
187 |
-
|
188 |
-
if submit_embed_settings and seq_file is not None and annot_files is not None:
|
189 |
-
video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
|
190 |
-
"SLIP",
|
191 |
-
downsample_rate,
|
192 |
-
False)
|
193 |
-
|
194 |
-
fnames = [seq_file.name]
|
195 |
-
embeddings_df = create_embeddings_csv_io(out="file",
|
196 |
-
fnames=fnames,
|
197 |
-
embeddings=video_embeddings,
|
198 |
-
frames=video_frames,
|
199 |
-
annotations=[annot_files],
|
200 |
-
test_fnames=None,
|
201 |
-
views=None,
|
202 |
-
conditions=None,
|
203 |
-
downsample_rate=downsample_rate)
|
204 |
-
st.session_state.embeddings_df = embeddings_df
|
205 |
-
elif embeddings_csv is not None:
|
206 |
-
embeddings_df = pd.read_csv(embeddings_csv)
|
207 |
-
st.session_state.embeddings_df = embeddings_df
|
208 |
-
else:
|
209 |
-
st.text('Please upload file(s).')
|
210 |
-
|
211 |
-
st.divider()
|
212 |
-
st.subheader("provide video file if not yet already provided")
|
213 |
-
|
214 |
-
uploaded_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
215 |
-
|
216 |
-
st.divider()
|
217 |
-
if st.session_state.embeddings_df is not None and (uploaded_file is not None or seq_file is not None):
|
218 |
-
if seq_file is not None:
|
219 |
-
uploaded_file = seq_file
|
220 |
-
io_reader = get_io_reader(uploaded_file)
|
221 |
-
print("CONVERTED SEQ")
|
222 |
-
label_list = st.session_state.embeddings_df['Label'].to_list()
|
223 |
-
unique_label_list = get_unique_labels(label_list)
|
224 |
-
print(f"unique_labels: {unique_label_list}")
|
225 |
-
#unique_label_list = ['check_genital', 'wiggle', 'lordose', 'stay', 'turn', 'top_up', 'dart', 'sniff', 'approach', 'into_male_cage']
|
226 |
-
#unique_label_list = ['into_male_cage', 'intromission', 'male_sniff', 'mount']
|
227 |
-
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
228 |
-
'specified_classes' : unique_label_list,
|
229 |
-
'classes_to_remove' : None,
|
230 |
-
'max_class_size' : None,
|
231 |
-
'animal_state' : None,
|
232 |
-
'view' : None,
|
233 |
-
'shuffle_data' : False,
|
234 |
-
'test_videos' : None}
|
235 |
-
train_embeds, train_labels, train_images, _, _, _ = process_dataset_in_mem(**kwargs)
|
236 |
-
print("PROCESSED DATASET")
|
237 |
-
if "Images" in st.session_state.embeddings_df.keys():
|
238 |
-
train_images = [i for i in range(len(train_images))]
|
239 |
-
embedding_2d = get_2d_embedding(train_embeds)
|
240 |
-
else:
|
241 |
-
st.text('Please generate embeddings and provide video file.')
|
242 |
-
print("GOT 2D EMBEDS")
|
243 |
-
|
244 |
-
if uploaded_file is not None and st.session_state.embeddings_df is not None:
|
245 |
-
st.subheader("t-SNE Projection")
|
246 |
-
option = st.selectbox(
|
247 |
-
"Select Color Option",
|
248 |
-
("By Label", "By Time", "By Cluster")
|
249 |
-
)
|
250 |
-
if embedding_2d is not None:
|
251 |
-
if option is not None:
|
252 |
-
if option == "By Label":
|
253 |
-
color = 'label'
|
254 |
-
elif option == "By Time":
|
255 |
-
color = 'frame_no'
|
256 |
-
else:
|
257 |
-
color = 'cluster_label'
|
258 |
-
|
259 |
-
if option in ["By Label", "By Time"]:
|
260 |
-
edf = pd.DataFrame(embedding_2d,columns=['tsne_dim_1', 'tsne_dim_2'])
|
261 |
-
edf.insert(2,'frame_no',np.array([int(x) for x in train_images]))
|
262 |
-
edf.insert(3, 'label', train_labels)
|
263 |
-
fig = px.scatter(
|
264 |
-
edf,
|
265 |
-
x="tsne_dim_1",
|
266 |
-
y="tsne_dim_2",
|
267 |
-
color=color,
|
268 |
-
hover_data=["frame_no"],
|
269 |
-
color_discrete_sequence=px.colors.qualitative.Dark24
|
270 |
-
)
|
271 |
-
else:
|
272 |
-
r, _, _, _ = hdbscan_classification(train_embeds, embedding_2d, [4, 6])
|
273 |
-
edf = pd.DataFrame(embedding_2d,columns=['tsne_dim_1', 'tsne_dim_2'])
|
274 |
-
edf.insert(2,'frame_no',np.array([int(x) for x in train_images]))
|
275 |
-
edf.insert(3, 'label', train_labels)
|
276 |
-
edf.insert(4, 'cluster_label', [str(c_id) for c_id in r.labels_.tolist()])
|
277 |
-
fig = px.scatter(
|
278 |
-
edf,
|
279 |
-
x="tsne_dim_1",
|
280 |
-
y="tsne_dim_2",
|
281 |
-
color=color,
|
282 |
-
hover_data=["frame_no"],
|
283 |
-
color_discrete_sequence=px.colors.qualitative.Dark24
|
284 |
-
)
|
285 |
-
|
286 |
-
event = st.plotly_chart(fig, key="df", on_select="rerun")
|
287 |
-
else:
|
288 |
-
st.text("No Color Option Selected")
|
289 |
-
else:
|
290 |
-
st.text('No Embeddings Loaded')
|
291 |
-
|
292 |
-
event_dict = event.selection
|
293 |
-
|
294 |
-
if event_dict is not None:
|
295 |
-
custom_data = []
|
296 |
-
for point in event_dict['points']:
|
297 |
-
data = point["customdata"][0]
|
298 |
-
custom_data.append(int(data))
|
299 |
-
|
300 |
-
if len(custom_data) > 10:
|
301 |
-
custom_data = random.sample(custom_data, 10)
|
302 |
-
if len(custom_data) > 1:
|
303 |
-
col_1, col_2 = st.columns(2)
|
304 |
-
with col_1:
|
305 |
-
for frame_no in custom_data[::2]:
|
306 |
-
st.image(get_image(io_reader, frame_no))
|
307 |
-
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
308 |
-
with col_2:
|
309 |
-
for frame_no in custom_data[1::2]:
|
310 |
-
st.image(get_image(io_reader, frame_no))
|
311 |
-
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
312 |
-
elif len(custom_data) == 1:
|
313 |
-
frame_no = custom_data[0]
|
314 |
-
st.image(get_image(io_reader, frame_no))
|
315 |
-
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
316 |
-
else:
|
317 |
-
st.text('No Points Selected')
|
318 |
-
|
319 |
-
if len(custom_data) == 1:
|
320 |
-
frame_no = custom_data[0]
|
321 |
-
image = get_image(io_reader, frame_no)
|
322 |
-
system_prompt = SYSTEM_PROMPT
|
323 |
-
label = train_labels[frame_no]
|
324 |
-
question = f"The frame is annotated by a human observer with the label: {label}. Give evidence for this label using the posture of the mice and their current behavior. "\
|
325 |
-
"Also, designate a behavioral subtype of the given label that describes the current social interaction based on what you see about the posture of the mice and "\
|
326 |
-
"how they are positioned with respect to each other. Usually, the body parts (i.e., tail, genitals, face, body, ears, paws)" \
|
327 |
-
"of the mice that are closest to each other will give some clue. Please limit behavioral subtype to a 1-4 word phrase. limit your response to 4 sentences."
|
328 |
-
tokenizer, model, image_processor = load_llava_model(hf_token)
|
329 |
-
response = ask_question_with_image_llava(image, system_prompt, question,
|
330 |
-
tokenizer, model, image_processor)
|
331 |
-
st.markdown(response)
|
332 |
-
|
333 |
-
elif len(custom_data) > 1:
|
334 |
-
image_array = [get_image(io_reader, f_no) for f_no in custom_data]
|
335 |
-
label_array = [train_labels[f_no] for f_no in custom_data]
|
336 |
-
response = ask_summary_question(image_array, label_array, api_key)
|
337 |
-
st.markdown(response)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.express as px
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from utils.mp4Io import mp4Io_reader
|
7 |
+
from utils.seqIo import seqIo_reader
|
8 |
+
import pandas as pd
|
9 |
+
from PIL import Image
|
10 |
+
from pathlib import Path
|
11 |
+
from transformers import AutoProcessor, AutoModel
|
12 |
+
from tempfile import NamedTemporaryFile
|
13 |
+
from tqdm import tqdm
|
14 |
+
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, generate_embeddings_stream_io
|
15 |
+
from get_llava_response import get_llava_response, load_llava_checkpoint_hf
|
16 |
+
from sklearn.manifold import TSNE
|
17 |
+
from openai import OpenAI
|
18 |
+
import cv2
|
19 |
+
import base64
|
20 |
+
from hdbscan import HDBSCAN, all_points_membership_vectors
|
21 |
+
import random
|
22 |
+
|
23 |
+
# --server.maxUploadSize 3000
|
24 |
+
REPO_NAME = 'ncoria/llava-lora-vicuna-clip-5-epochs-merge'
|
25 |
+
|
26 |
+
def load_llava_model(hf_token):
|
27 |
+
return load_llava_checkpoint_hf(REPO_NAME, hf_token)
|
28 |
+
|
29 |
+
def get_unique_labels(label_list: list[str]):
|
30 |
+
label_set = set()
|
31 |
+
for label in label_list:
|
32 |
+
individual_labels = label.split('||')
|
33 |
+
for individual_label in individual_labels:
|
34 |
+
label_set.add(individual_label)
|
35 |
+
return list(label_set)
|
36 |
+
|
37 |
+
SYSTEM_PROMPT = """You are a researcher studying mice interactions from videos of the inside of a resident
|
38 |
+
intruder box where there is either just the resident mouse (the black one) or the resident and the intruder mouse (the white one).
|
39 |
+
Your job is to answer questions about the behavior of the mice in the image given the context that each image is a frame of a continuous video.
|
40 |
+
Thus, you should use the visual information about the mice in the image to try to provide a detailed behavioral description of the image."""
|
41 |
+
|
42 |
+
@st.cache_resource
|
43 |
+
def get_io_reader(uploaded_file):
|
44 |
+
if uploaded_file.name[-3:]=='seq':
|
45 |
+
with NamedTemporaryFile(suffix="seq", delete=False) as temp:
|
46 |
+
temp.write(uploaded_file.getvalue())
|
47 |
+
sr = seqIo_reader(temp.name)
|
48 |
+
else:
|
49 |
+
with NamedTemporaryFile(suffix="mp4", delete=False) as temp:
|
50 |
+
temp.write(uploaded_file.getvalue())
|
51 |
+
sr = mp4Io_reader(temp.name)
|
52 |
+
return sr
|
53 |
+
|
54 |
+
def get_image(sr, frame_no: int):
|
55 |
+
image, _ = sr.getFrame(frame_no)
|
56 |
+
return image
|
57 |
+
|
58 |
+
@st.cache_data
|
59 |
+
def get_2d_embedding(embeddings: pd.DataFrame):
|
60 |
+
tsne = TSNE(n_jobs=4, n_components=2, random_state=42, perplexity=50)
|
61 |
+
embedding_2d = tsne.fit_transform(np.array(embeddings))
|
62 |
+
return embedding_2d
|
63 |
+
|
64 |
+
HDBSCAN_PARAMS = {
|
65 |
+
'min_samples': 1
|
66 |
+
}
|
67 |
+
|
68 |
+
@st.cache_data
|
69 |
+
def hdbscan_classification(umap_embeddings, embeddings_2d, cluster_range):
|
70 |
+
max_num_clusters = -np.infty
|
71 |
+
num_clusters = []
|
72 |
+
min_cluster_size = np.linspace(cluster_range[0], cluster_range[1], 4)
|
73 |
+
for min_c in min_cluster_size:
|
74 |
+
learned_hierarchy = HDBSCAN(
|
75 |
+
prediction_data=True, min_cluster_size=int(round(min_c * 0.01 *umap_embeddings.shape[0])),
|
76 |
+
cluster_selection_method='leaf' ,
|
77 |
+
**HDBSCAN_PARAMS).fit(umap_embeddings)
|
78 |
+
num_clusters.append(len(np.unique(learned_hierarchy.labels_)))
|
79 |
+
if num_clusters[-1] > max_num_clusters:
|
80 |
+
max_num_clusters = num_clusters[-1]
|
81 |
+
retained_hierarchy = learned_hierarchy
|
82 |
+
assignments = retained_hierarchy.labels_
|
83 |
+
assign_prob = all_points_membership_vectors(retained_hierarchy)
|
84 |
+
soft_assignments = np.argmax(assign_prob, axis=1)
|
85 |
+
retained_hierarchy.fit(embeddings_2d)
|
86 |
+
return retained_hierarchy, assignments, assign_prob, soft_assignments
|
87 |
+
|
88 |
+
def upload_image(frame: np.ndarray):
|
89 |
+
"""returns the file ID."""
|
90 |
+
_, encoded_image = cv2.imencode('.png', frame)
|
91 |
+
return base64.b64encode(encoded_image.tobytes()).decode('utf-8')
|
92 |
+
|
93 |
+
def ask_question_with_image_gpt(file_id, system_prompt, question, api_key):
|
94 |
+
"""Asks a question about the uploaded image."""
|
95 |
+
client = OpenAI(api_key=api_key)
|
96 |
+
|
97 |
+
if file_id != None:
|
98 |
+
response = client.chat.completions.create(
|
99 |
+
model="gpt-4o",
|
100 |
+
messages=[
|
101 |
+
{"role": "system", "content": system_prompt},
|
102 |
+
{"role": "user", "content": [
|
103 |
+
{"type": "text", "text": question},
|
104 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpg:base64, {file_id}"}}]
|
105 |
+
}
|
106 |
+
]
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
response = client.chat.completions.create(
|
110 |
+
model="gpt-4o",
|
111 |
+
messages=[
|
112 |
+
{"role": "system", "content": system_prompt},
|
113 |
+
{"role": "user", "content": question}
|
114 |
+
]
|
115 |
+
)
|
116 |
+
return response.choices[0].message.content
|
117 |
+
|
118 |
+
def ask_question_with_image_llava(image, system_prompt, question,
|
119 |
+
tokenizer, model, image_processor):
|
120 |
+
outputs = get_llava_response([question],
|
121 |
+
[image],
|
122 |
+
system_prompt,
|
123 |
+
tokenizer,
|
124 |
+
model,
|
125 |
+
image_processor,
|
126 |
+
REPO_NAME,
|
127 |
+
stream_output=False)
|
128 |
+
return outputs[0]
|
129 |
+
|
130 |
+
def ask_summary_question(image_array, label_array, api_key):
|
131 |
+
# load llava model
|
132 |
+
tokenizer, model, image_processor = load_llava_model(hf_token)
|
133 |
+
|
134 |
+
# global variable
|
135 |
+
system_prompt = SYSTEM_PROMPT
|
136 |
+
|
137 |
+
# collect responses
|
138 |
+
responses = []
|
139 |
+
|
140 |
+
# create progress bar
|
141 |
+
j = 0
|
142 |
+
pbar_text = lambda j: f'Creating llava response {j}/{len(label_array)}.'
|
143 |
+
pbar = st.progress(0, text=pbar_text(0))
|
144 |
+
|
145 |
+
for i, image in enumerate(image_array):
|
146 |
+
label = label_array[i]
|
147 |
+
question = f"The frame is annotated by a human observer with the label: {label}. Give evidence for this label using the posture of the mice and their current behavior. "
|
148 |
+
question += "Also, designate a behavioral subtype of the given label that describes the current social interaction based on what you see about the posture of the mice and "\
|
149 |
+
"how they are positioned with respect to each other. Usually, the body parts (i.e., tail, genitals, face, body, ears, paws)"\
|
150 |
+
"of the mice that are closest to each other will give some clue. Please limit behavioral subtype to a 1-4 word phrase. limit your response to 4 sentences."
|
151 |
+
response = ask_question_with_image_llava(image, system_prompt, question,
|
152 |
+
tokenizer, model, image_processor)
|
153 |
+
responses.append(response)
|
154 |
+
# update progress bar
|
155 |
+
j += 1
|
156 |
+
pbar.progress(j/len(label_array), pbar_text(j))
|
157 |
+
|
158 |
+
system_prompt_summarize = "You are a researcher studying mice interactions from videos of the inside of a resident "\
|
159 |
+
"intruder box where there is either just the resident mouse (the black one) or the resident and the intruder mouse (the white one). "\
|
160 |
+
"You will be given a question about a list of descriptions from frames of these videos. "\
|
161 |
+
"Your job is to answer the question by focusing on the behaviors of the mice and their postures "\
|
162 |
+
"as well as any other aspects of the descriptions that may be relevant to the class label associated with them"
|
163 |
+
user_prompt_summarize = "Here are several descriptions of individual frames from a mouse behavior video. Please summarize these descriptions and provide a suggestion for a "\
|
164 |
+
"behavior label which captures what is described in the descriptions: \n\n"
|
165 |
+
user_prompt_summarize = user_prompt_summarize + '\n'.join(responses)
|
166 |
+
summary_response = ask_question_with_image_gpt(None, system_prompt_summarize, user_prompt_summarize, api_key)
|
167 |
+
return summary_response
|
168 |
+
|
169 |
+
if "embeddings_df" not in st.session_state:
|
170 |
+
st.session_state.embeddings_df = None
|
171 |
+
|
172 |
+
st.title('batik: behavior discovery and LLM-based interpretation')
|
173 |
+
|
174 |
+
api_key = st.text_input("OpenAI API Key:","")
|
175 |
+
hf_token = st.text_input("HuggingFace Token:","")
|
176 |
+
st.subheader("generate or import embeddings")
|
177 |
+
|
178 |
+
st.text("Upload files to generate embeddings.")
|
179 |
+
with st.form('embedding_generation_settings'):
|
180 |
+
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
181 |
+
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
182 |
+
downsample_rate = st.number_input('Downsample Rate',value=4)
|
183 |
+
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
184 |
+
|
185 |
+
st.markdown("**(Optional)** Upload embeddings.")
|
186 |
+
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])
|
187 |
+
|
188 |
+
if submit_embed_settings and seq_file is not None and annot_files is not None:
|
189 |
+
video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
|
190 |
+
"SLIP",
|
191 |
+
downsample_rate,
|
192 |
+
False)
|
193 |
+
|
194 |
+
fnames = [seq_file.name]
|
195 |
+
embeddings_df = create_embeddings_csv_io(out="file",
|
196 |
+
fnames=fnames,
|
197 |
+
embeddings=video_embeddings,
|
198 |
+
frames=video_frames,
|
199 |
+
annotations=[annot_files],
|
200 |
+
test_fnames=None,
|
201 |
+
views=None,
|
202 |
+
conditions=None,
|
203 |
+
downsample_rate=downsample_rate)
|
204 |
+
st.session_state.embeddings_df = embeddings_df
|
205 |
+
elif embeddings_csv is not None:
|
206 |
+
embeddings_df = pd.read_csv(embeddings_csv)
|
207 |
+
st.session_state.embeddings_df = embeddings_df
|
208 |
+
else:
|
209 |
+
st.text('Please upload file(s).')
|
210 |
+
|
211 |
+
st.divider()
|
212 |
+
st.subheader("provide video file if not yet already provided")
|
213 |
+
|
214 |
+
uploaded_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
215 |
+
|
216 |
+
st.divider()
|
217 |
+
if st.session_state.embeddings_df is not None and (uploaded_file is not None or seq_file is not None):
|
218 |
+
if seq_file is not None:
|
219 |
+
uploaded_file = seq_file
|
220 |
+
io_reader = get_io_reader(uploaded_file)
|
221 |
+
print("CONVERTED SEQ")
|
222 |
+
label_list = st.session_state.embeddings_df['Label'].to_list()
|
223 |
+
unique_label_list = get_unique_labels(label_list)
|
224 |
+
print(f"unique_labels: {unique_label_list}")
|
225 |
+
#unique_label_list = ['check_genital', 'wiggle', 'lordose', 'stay', 'turn', 'top_up', 'dart', 'sniff', 'approach', 'into_male_cage']
|
226 |
+
#unique_label_list = ['into_male_cage', 'intromission', 'male_sniff', 'mount']
|
227 |
+
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
228 |
+
'specified_classes' : unique_label_list,
|
229 |
+
'classes_to_remove' : None,
|
230 |
+
'max_class_size' : None,
|
231 |
+
'animal_state' : None,
|
232 |
+
'view' : None,
|
233 |
+
'shuffle_data' : False,
|
234 |
+
'test_videos' : None}
|
235 |
+
train_embeds, train_labels, train_images, _, _, _ = process_dataset_in_mem(**kwargs)
|
236 |
+
print("PROCESSED DATASET")
|
237 |
+
if "Images" in st.session_state.embeddings_df.keys():
|
238 |
+
train_images = [i for i in range(len(train_images))]
|
239 |
+
embedding_2d = get_2d_embedding(train_embeds)
|
240 |
+
else:
|
241 |
+
st.text('Please generate embeddings and provide video file.')
|
242 |
+
print("GOT 2D EMBEDS")
|
243 |
+
|
244 |
+
if uploaded_file is not None and st.session_state.embeddings_df is not None:
|
245 |
+
st.subheader("t-SNE Projection")
|
246 |
+
option = st.selectbox(
|
247 |
+
"Select Color Option",
|
248 |
+
("By Label", "By Time", "By Cluster")
|
249 |
+
)
|
250 |
+
if embedding_2d is not None:
|
251 |
+
if option is not None:
|
252 |
+
if option == "By Label":
|
253 |
+
color = 'label'
|
254 |
+
elif option == "By Time":
|
255 |
+
color = 'frame_no'
|
256 |
+
else:
|
257 |
+
color = 'cluster_label'
|
258 |
+
|
259 |
+
if option in ["By Label", "By Time"]:
|
260 |
+
edf = pd.DataFrame(embedding_2d,columns=['tsne_dim_1', 'tsne_dim_2'])
|
261 |
+
edf.insert(2,'frame_no',np.array([int(x) for x in train_images]))
|
262 |
+
edf.insert(3, 'label', train_labels)
|
263 |
+
fig = px.scatter(
|
264 |
+
edf,
|
265 |
+
x="tsne_dim_1",
|
266 |
+
y="tsne_dim_2",
|
267 |
+
color=color,
|
268 |
+
hover_data=["frame_no"],
|
269 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
r, _, _, _ = hdbscan_classification(train_embeds, embedding_2d, [4, 6])
|
273 |
+
edf = pd.DataFrame(embedding_2d,columns=['tsne_dim_1', 'tsne_dim_2'])
|
274 |
+
edf.insert(2,'frame_no',np.array([int(x) for x in train_images]))
|
275 |
+
edf.insert(3, 'label', train_labels)
|
276 |
+
edf.insert(4, 'cluster_label', [str(c_id) for c_id in r.labels_.tolist()])
|
277 |
+
fig = px.scatter(
|
278 |
+
edf,
|
279 |
+
x="tsne_dim_1",
|
280 |
+
y="tsne_dim_2",
|
281 |
+
color=color,
|
282 |
+
hover_data=["frame_no"],
|
283 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
284 |
+
)
|
285 |
+
|
286 |
+
event = st.plotly_chart(fig, key="df", on_select="rerun")
|
287 |
+
else:
|
288 |
+
st.text("No Color Option Selected")
|
289 |
+
else:
|
290 |
+
st.text('No Embeddings Loaded')
|
291 |
+
|
292 |
+
event_dict = event.selection
|
293 |
+
|
294 |
+
if event_dict is not None:
|
295 |
+
custom_data = []
|
296 |
+
for point in event_dict['points']:
|
297 |
+
data = point["customdata"][0]
|
298 |
+
custom_data.append(int(data))
|
299 |
+
|
300 |
+
if len(custom_data) > 10:
|
301 |
+
custom_data = random.sample(custom_data, 10)
|
302 |
+
if len(custom_data) > 1:
|
303 |
+
col_1, col_2 = st.columns(2)
|
304 |
+
with col_1:
|
305 |
+
for frame_no in custom_data[::2]:
|
306 |
+
st.image(get_image(io_reader, frame_no))
|
307 |
+
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
308 |
+
with col_2:
|
309 |
+
for frame_no in custom_data[1::2]:
|
310 |
+
st.image(get_image(io_reader, frame_no))
|
311 |
+
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
312 |
+
elif len(custom_data) == 1:
|
313 |
+
frame_no = custom_data[0]
|
314 |
+
st.image(get_image(io_reader, frame_no))
|
315 |
+
st.caption(f"Frame {frame_no}, {train_labels[frame_no]}")
|
316 |
+
else:
|
317 |
+
st.text('No Points Selected')
|
318 |
+
|
319 |
+
if len(custom_data) == 1:
|
320 |
+
frame_no = custom_data[0]
|
321 |
+
image = get_image(io_reader, frame_no)
|
322 |
+
system_prompt = SYSTEM_PROMPT
|
323 |
+
label = train_labels[frame_no]
|
324 |
+
question = f"The frame is annotated by a human observer with the label: {label}. Give evidence for this label using the posture of the mice and their current behavior. "\
|
325 |
+
"Also, designate a behavioral subtype of the given label that describes the current social interaction based on what you see about the posture of the mice and "\
|
326 |
+
"how they are positioned with respect to each other. Usually, the body parts (i.e., tail, genitals, face, body, ears, paws)" \
|
327 |
+
"of the mice that are closest to each other will give some clue. Please limit behavioral subtype to a 1-4 word phrase. limit your response to 4 sentences."
|
328 |
+
tokenizer, model, image_processor = load_llava_model(hf_token)
|
329 |
+
response = ask_question_with_image_llava(image, system_prompt, question,
|
330 |
+
tokenizer, model, image_processor)
|
331 |
+
st.markdown(response)
|
332 |
+
|
333 |
+
elif len(custom_data) > 1:
|
334 |
+
image_array = [get_image(io_reader, f_no) for f_no in custom_data]
|
335 |
+
label_array = [train_labels[f_no] for f_no in custom_data]
|
336 |
+
response = ask_summary_question(image_array, label_array, api_key)
|
337 |
+
st.markdown(response)
|