Spaces:
Sleeping
Sleeping
update bout threshold
Browse files- apply_model.py +203 -203
apply_model.py
CHANGED
@@ -1,203 +1,203 @@
|
|
1 |
-
import os
|
2 |
-
import pickle
|
3 |
-
from random import random
|
4 |
-
import streamlit as st
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from matplotlib.colors import ListedColormap
|
7 |
-
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
-
import torch
|
10 |
-
from utils.mp4Io import mp4Io_reader
|
11 |
-
from utils.seqIo import seqIo_reader
|
12 |
-
import pandas as pd
|
13 |
-
from PIL import Image
|
14 |
-
from pathlib import Path
|
15 |
-
from transformers import AutoProcessor, AutoModel
|
16 |
-
from tempfile import NamedTemporaryFile
|
17 |
-
from tqdm import tqdm
|
18 |
-
from sklearn.metrics import accuracy_score, classification_report
|
19 |
-
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, multiclass_merge_and_filter_bouts, generate_embeddings_stream_io
|
20 |
-
|
21 |
-
# --server.maxUploadSize 3000
|
22 |
-
|
23 |
-
def get_io_reader(uploaded_file):
|
24 |
-
if uploaded_file.name[-3:]=='seq':
|
25 |
-
with NamedTemporaryFile(suffix="seq", delete=False) as temp:
|
26 |
-
temp.write(uploaded_file.getvalue())
|
27 |
-
sr = seqIo_reader(temp.name)
|
28 |
-
else:
|
29 |
-
with NamedTemporaryFile(suffix="mp4", delete=False) as temp:
|
30 |
-
temp.write(uploaded_file.getvalue())
|
31 |
-
sr = mp4Io_reader(temp.name)
|
32 |
-
return sr
|
33 |
-
|
34 |
-
def get_unique_labels(label_list: list[str]):
|
35 |
-
label_set = set()
|
36 |
-
for label in label_list:
|
37 |
-
individual_labels = label.split('||')
|
38 |
-
for individual_label in individual_labels:
|
39 |
-
label_set.add(individual_label)
|
40 |
-
return list(label_set)
|
41 |
-
|
42 |
-
def get_smoothed_predictions(svm_model, test_embeds):
|
43 |
-
test_pred = svm_model.predict(test_embeds)
|
44 |
-
test_prob = svm_model.predict_proba(test_embeds)
|
45 |
-
|
46 |
-
bout_threshold =
|
47 |
-
proximity_threshold = 2
|
48 |
-
|
49 |
-
predictions = multiclass_merge_and_filter_bouts(test_pred, bout_threshold, proximity_threshold)
|
50 |
-
return predictions
|
51 |
-
|
52 |
-
if "embeddings_df" not in st.session_state:
|
53 |
-
st.session_state.embeddings_df = None
|
54 |
-
|
55 |
-
if "smoothed_predictions" not in st.session_state:
|
56 |
-
st.session_state.smoothed_predictions = None
|
57 |
-
st.session_state.test_labels = []
|
58 |
-
|
59 |
-
st.title('batik: frame classifier')
|
60 |
-
|
61 |
-
st.text("Upload files to apply trained classifier on.")
|
62 |
-
with st.form('embedding_generation_settings'):
|
63 |
-
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
64 |
-
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
65 |
-
downsample_rate = st.number_input('Downsample Rate',value=4)
|
66 |
-
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
67 |
-
|
68 |
-
st.markdown("**(Optional)** Upload embeddings if not generating above.")
|
69 |
-
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])
|
70 |
-
|
71 |
-
if submit_embed_settings and seq_file is not None and annot_files is not None:
|
72 |
-
video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
|
73 |
-
"SLIP",
|
74 |
-
downsample_rate,
|
75 |
-
False)
|
76 |
-
|
77 |
-
fnames = [seq_file.name]
|
78 |
-
embeddings_df = create_embeddings_csv_io(out="file",
|
79 |
-
fnames=fnames,
|
80 |
-
embeddings=video_embeddings,
|
81 |
-
frames=video_frames,
|
82 |
-
annotations=[annot_files],
|
83 |
-
test_fnames=None,
|
84 |
-
views=None,
|
85 |
-
conditions=None,
|
86 |
-
downsample_rate=downsample_rate)
|
87 |
-
st.session_state.embeddings_df = embeddings_df
|
88 |
-
|
89 |
-
elif embeddings_csv is not None:
|
90 |
-
embeddings_df = pd.read_csv(embeddings_csv)
|
91 |
-
st.session_state.embeddings_df = embeddings_df
|
92 |
-
else:
|
93 |
-
st.text('Please upload file(s).')
|
94 |
-
|
95 |
-
st.divider()
|
96 |
-
st.markdown("Upload classifier model.")
|
97 |
-
pickled_file = st.file_uploader("Choose a .pkl File", type=['pkl'])
|
98 |
-
|
99 |
-
if pickled_file is not None:
|
100 |
-
with NamedTemporaryFile(suffix='pkl', delete=False) as temp:
|
101 |
-
temp.write(pickled_file.getvalue())
|
102 |
-
with open(temp.name, 'rb') as pickled_model:
|
103 |
-
svm_clf = pickle.load(pickled_model)
|
104 |
-
else:
|
105 |
-
svm_clf = None
|
106 |
-
|
107 |
-
st.divider()
|
108 |
-
if st.session_state.embeddings_df is not None and svm_clf is not None:
|
109 |
-
st.subheader("specify dataset labels")
|
110 |
-
label_list = st.session_state.embeddings_df['Label'].to_list()
|
111 |
-
unique_label_list = get_unique_labels(label_list)
|
112 |
-
|
113 |
-
with st.form('apply_model_settings'):
|
114 |
-
st.text("Select label(s):")
|
115 |
-
specified_classes = st.multiselect("Label(s) included:", options=unique_label_list)
|
116 |
-
|
117 |
-
|
118 |
-
apply_model = st.form_submit_button("Apply Model")
|
119 |
-
|
120 |
-
if apply_model:
|
121 |
-
if 'Test' in st.session_state.embeddings_df:
|
122 |
-
test_videos = True
|
123 |
-
else:
|
124 |
-
print(f'shape of df: {st.session_state.embeddings_df.shape[0]}')
|
125 |
-
test_videos_array = [True for i in range(st.session_state.embeddings_df.shape[0])]
|
126 |
-
st.session_state.embeddings_df['Test'] = test_videos_array
|
127 |
-
test_videos = True
|
128 |
-
|
129 |
-
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
130 |
-
'specified_classes' : specified_classes,
|
131 |
-
'classes_to_remove' : None,
|
132 |
-
'max_class_size' : None,
|
133 |
-
'animal_state' : None,
|
134 |
-
'view' : None,
|
135 |
-
'shuffle_data' : False,
|
136 |
-
'test_videos' : test_videos}
|
137 |
-
train_embeds, train_labels, train_images, test_embeds, test_labels, test_images =\
|
138 |
-
process_dataset_in_mem(**kwargs)
|
139 |
-
|
140 |
-
# get predictions from embeddings
|
141 |
-
with st.spinner("Model application in progress..."):
|
142 |
-
smoothed_predictions = get_smoothed_predictions(svm_clf, test_embeds)
|
143 |
-
|
144 |
-
# save variables to state
|
145 |
-
st.session_state.smoothed_predictions = smoothed_predictions
|
146 |
-
st.session_state.test_labels = test_labels
|
147 |
-
|
148 |
-
if st.session_state.smoothed_predictions is not None:
|
149 |
-
# Convert labels to numerical values
|
150 |
-
label_to_appear_first = 'other'
|
151 |
-
unique_labels = set(st.session_state.test_labels)
|
152 |
-
unique_labels.discard(label_to_appear_first)
|
153 |
-
|
154 |
-
label_to_index = {label_to_appear_first: 0}
|
155 |
-
|
156 |
-
label_to_index.update({label: idx + 1 for idx, label in enumerate(unique_labels)})
|
157 |
-
index_to_label = {idx: label for label, idx in label_to_index.items()}
|
158 |
-
|
159 |
-
numerical_labels_test = np.array([label_to_index[label] for label in st.session_state.test_labels])
|
160 |
-
print("Label Valence: ", label_to_index)
|
161 |
-
|
162 |
-
#smoothed_predictions test labels
|
163 |
-
if len(st.session_state.smoothed_predictions) > 0:
|
164 |
-
test_accuracy = accuracy_score(numerical_labels_test, st.session_state.smoothed_predictions)
|
165 |
-
else:
|
166 |
-
test_accuracy = 0 # If no predictions meet the threshold, set accuracy to 0
|
167 |
-
|
168 |
-
# test_accuracy = accuracy_score(numerical_labels_test, test_pred)
|
169 |
-
report = classification_report(numerical_labels_test,
|
170 |
-
st.session_state.smoothed_predictions,
|
171 |
-
target_names=[index_to_label[idx] for idx in range(len(index_to_label))],
|
172 |
-
output_dict=True)
|
173 |
-
report_df = pd.DataFrame(report).transpose()
|
174 |
-
|
175 |
-
st.text(f"Eval Accuracy: {test_accuracy}")
|
176 |
-
st.subheader("Classification Report:")
|
177 |
-
st.dataframe(report_df)
|
178 |
-
|
179 |
-
# create figure (behavior raster)
|
180 |
-
fig, ax = plt.subplots()
|
181 |
-
raster = ax.imshow(st.session_state.smoothed_predictions.reshape((1,st.session_state.smoothed_predictions.size)),
|
182 |
-
aspect='auto',
|
183 |
-
interpolation='nearest',
|
184 |
-
cmap=ListedColormap(['white'] + [(random(),random(),random()) for i in range(len(index_to_label) - 1)]))
|
185 |
-
ax.set_yticklabels([])
|
186 |
-
ax.set_xlabel('frames')
|
187 |
-
cbar = fig.colorbar(raster)
|
188 |
-
labels = [label_to_appear_first] + list(unique_labels)
|
189 |
-
spacing = (len(labels) - 1)/len(labels)
|
190 |
-
start = spacing/2
|
191 |
-
ticks = [start] + [start + spacing*i for i in range(1,len(labels))]
|
192 |
-
cbar.set_ticks(ticks=ticks, labels = labels)
|
193 |
-
|
194 |
-
st.pyplot(fig)
|
195 |
-
|
196 |
-
# save generated annotations
|
197 |
-
annotations = [labels[x] for x in st.session_state.smoothed_predictions]
|
198 |
-
annotations_df = pd.DataFrame(annotations, columns=['label'])
|
199 |
-
csv = annotations_df.to_csv(header=False).encode("utf-8")
|
200 |
-
output_file_name = st.text_input("Output File Name:","output")
|
201 |
-
st.download_button("Download annotations as .csv",
|
202 |
-
data=csv,
|
203 |
-
file_name=f"{output_file_name}.csv")
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
from random import random
|
4 |
+
import streamlit as st
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from matplotlib.colors import ListedColormap
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
from utils.mp4Io import mp4Io_reader
|
11 |
+
from utils.seqIo import seqIo_reader
|
12 |
+
import pandas as pd
|
13 |
+
from PIL import Image
|
14 |
+
from pathlib import Path
|
15 |
+
from transformers import AutoProcessor, AutoModel
|
16 |
+
from tempfile import NamedTemporaryFile
|
17 |
+
from tqdm import tqdm
|
18 |
+
from sklearn.metrics import accuracy_score, classification_report
|
19 |
+
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, multiclass_merge_and_filter_bouts, generate_embeddings_stream_io
|
20 |
+
|
21 |
+
# --server.maxUploadSize 3000
|
22 |
+
|
23 |
+
def get_io_reader(uploaded_file):
|
24 |
+
if uploaded_file.name[-3:]=='seq':
|
25 |
+
with NamedTemporaryFile(suffix="seq", delete=False) as temp:
|
26 |
+
temp.write(uploaded_file.getvalue())
|
27 |
+
sr = seqIo_reader(temp.name)
|
28 |
+
else:
|
29 |
+
with NamedTemporaryFile(suffix="mp4", delete=False) as temp:
|
30 |
+
temp.write(uploaded_file.getvalue())
|
31 |
+
sr = mp4Io_reader(temp.name)
|
32 |
+
return sr
|
33 |
+
|
34 |
+
def get_unique_labels(label_list: list[str]):
|
35 |
+
label_set = set()
|
36 |
+
for label in label_list:
|
37 |
+
individual_labels = label.split('||')
|
38 |
+
for individual_label in individual_labels:
|
39 |
+
label_set.add(individual_label)
|
40 |
+
return list(label_set)
|
41 |
+
|
42 |
+
def get_smoothed_predictions(svm_model, test_embeds):
|
43 |
+
test_pred = svm_model.predict(test_embeds)
|
44 |
+
test_prob = svm_model.predict_proba(test_embeds)
|
45 |
+
|
46 |
+
bout_threshold = 30
|
47 |
+
proximity_threshold = 2
|
48 |
+
|
49 |
+
predictions = multiclass_merge_and_filter_bouts(test_pred, bout_threshold, proximity_threshold)
|
50 |
+
return predictions
|
51 |
+
|
52 |
+
if "embeddings_df" not in st.session_state:
|
53 |
+
st.session_state.embeddings_df = None
|
54 |
+
|
55 |
+
if "smoothed_predictions" not in st.session_state:
|
56 |
+
st.session_state.smoothed_predictions = None
|
57 |
+
st.session_state.test_labels = []
|
58 |
+
|
59 |
+
st.title('batik: frame classifier')
|
60 |
+
|
61 |
+
st.text("Upload files to apply trained classifier on.")
|
62 |
+
with st.form('embedding_generation_settings'):
|
63 |
+
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
|
64 |
+
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
|
65 |
+
downsample_rate = st.number_input('Downsample Rate',value=4)
|
66 |
+
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
|
67 |
+
|
68 |
+
st.markdown("**(Optional)** Upload embeddings if not generating above.")
|
69 |
+
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])
|
70 |
+
|
71 |
+
if submit_embed_settings and seq_file is not None and annot_files is not None:
|
72 |
+
video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
|
73 |
+
"SLIP",
|
74 |
+
downsample_rate,
|
75 |
+
False)
|
76 |
+
|
77 |
+
fnames = [seq_file.name]
|
78 |
+
embeddings_df = create_embeddings_csv_io(out="file",
|
79 |
+
fnames=fnames,
|
80 |
+
embeddings=video_embeddings,
|
81 |
+
frames=video_frames,
|
82 |
+
annotations=[annot_files],
|
83 |
+
test_fnames=None,
|
84 |
+
views=None,
|
85 |
+
conditions=None,
|
86 |
+
downsample_rate=downsample_rate)
|
87 |
+
st.session_state.embeddings_df = embeddings_df
|
88 |
+
|
89 |
+
elif embeddings_csv is not None:
|
90 |
+
embeddings_df = pd.read_csv(embeddings_csv)
|
91 |
+
st.session_state.embeddings_df = embeddings_df
|
92 |
+
else:
|
93 |
+
st.text('Please upload file(s).')
|
94 |
+
|
95 |
+
st.divider()
|
96 |
+
st.markdown("Upload classifier model.")
|
97 |
+
pickled_file = st.file_uploader("Choose a .pkl File", type=['pkl'])
|
98 |
+
|
99 |
+
if pickled_file is not None:
|
100 |
+
with NamedTemporaryFile(suffix='pkl', delete=False) as temp:
|
101 |
+
temp.write(pickled_file.getvalue())
|
102 |
+
with open(temp.name, 'rb') as pickled_model:
|
103 |
+
svm_clf = pickle.load(pickled_model)
|
104 |
+
else:
|
105 |
+
svm_clf = None
|
106 |
+
|
107 |
+
st.divider()
|
108 |
+
if st.session_state.embeddings_df is not None and svm_clf is not None:
|
109 |
+
st.subheader("specify dataset labels")
|
110 |
+
label_list = st.session_state.embeddings_df['Label'].to_list()
|
111 |
+
unique_label_list = get_unique_labels(label_list)
|
112 |
+
|
113 |
+
with st.form('apply_model_settings'):
|
114 |
+
st.text("Select label(s):")
|
115 |
+
specified_classes = st.multiselect("Label(s) included:", options=unique_label_list)
|
116 |
+
|
117 |
+
|
118 |
+
apply_model = st.form_submit_button("Apply Model")
|
119 |
+
|
120 |
+
if apply_model:
|
121 |
+
if 'Test' in st.session_state.embeddings_df:
|
122 |
+
test_videos = True
|
123 |
+
else:
|
124 |
+
print(f'shape of df: {st.session_state.embeddings_df.shape[0]}')
|
125 |
+
test_videos_array = [True for i in range(st.session_state.embeddings_df.shape[0])]
|
126 |
+
st.session_state.embeddings_df['Test'] = test_videos_array
|
127 |
+
test_videos = True
|
128 |
+
|
129 |
+
kwargs = {'embeddings_df' : st.session_state.embeddings_df,
|
130 |
+
'specified_classes' : specified_classes,
|
131 |
+
'classes_to_remove' : None,
|
132 |
+
'max_class_size' : None,
|
133 |
+
'animal_state' : None,
|
134 |
+
'view' : None,
|
135 |
+
'shuffle_data' : False,
|
136 |
+
'test_videos' : test_videos}
|
137 |
+
train_embeds, train_labels, train_images, test_embeds, test_labels, test_images =\
|
138 |
+
process_dataset_in_mem(**kwargs)
|
139 |
+
|
140 |
+
# get predictions from embeddings
|
141 |
+
with st.spinner("Model application in progress..."):
|
142 |
+
smoothed_predictions = get_smoothed_predictions(svm_clf, test_embeds)
|
143 |
+
|
144 |
+
# save variables to state
|
145 |
+
st.session_state.smoothed_predictions = smoothed_predictions
|
146 |
+
st.session_state.test_labels = test_labels
|
147 |
+
|
148 |
+
if st.session_state.smoothed_predictions is not None:
|
149 |
+
# Convert labels to numerical values
|
150 |
+
label_to_appear_first = 'other'
|
151 |
+
unique_labels = set(st.session_state.test_labels)
|
152 |
+
unique_labels.discard(label_to_appear_first)
|
153 |
+
|
154 |
+
label_to_index = {label_to_appear_first: 0}
|
155 |
+
|
156 |
+
label_to_index.update({label: idx + 1 for idx, label in enumerate(unique_labels)})
|
157 |
+
index_to_label = {idx: label for label, idx in label_to_index.items()}
|
158 |
+
|
159 |
+
numerical_labels_test = np.array([label_to_index[label] for label in st.session_state.test_labels])
|
160 |
+
print("Label Valence: ", label_to_index)
|
161 |
+
|
162 |
+
#smoothed_predictions test labels
|
163 |
+
if len(st.session_state.smoothed_predictions) > 0:
|
164 |
+
test_accuracy = accuracy_score(numerical_labels_test, st.session_state.smoothed_predictions)
|
165 |
+
else:
|
166 |
+
test_accuracy = 0 # If no predictions meet the threshold, set accuracy to 0
|
167 |
+
|
168 |
+
# test_accuracy = accuracy_score(numerical_labels_test, test_pred)
|
169 |
+
report = classification_report(numerical_labels_test,
|
170 |
+
st.session_state.smoothed_predictions,
|
171 |
+
target_names=[index_to_label[idx] for idx in range(len(index_to_label))],
|
172 |
+
output_dict=True)
|
173 |
+
report_df = pd.DataFrame(report).transpose()
|
174 |
+
|
175 |
+
st.text(f"Eval Accuracy: {test_accuracy}")
|
176 |
+
st.subheader("Classification Report:")
|
177 |
+
st.dataframe(report_df)
|
178 |
+
|
179 |
+
# create figure (behavior raster)
|
180 |
+
fig, ax = plt.subplots()
|
181 |
+
raster = ax.imshow(st.session_state.smoothed_predictions.reshape((1,st.session_state.smoothed_predictions.size)),
|
182 |
+
aspect='auto',
|
183 |
+
interpolation='nearest',
|
184 |
+
cmap=ListedColormap(['white'] + [(random(),random(),random()) for i in range(len(index_to_label) - 1)]))
|
185 |
+
ax.set_yticklabels([])
|
186 |
+
ax.set_xlabel('frames')
|
187 |
+
cbar = fig.colorbar(raster)
|
188 |
+
labels = [label_to_appear_first] + list(unique_labels)
|
189 |
+
spacing = (len(labels) - 1)/len(labels)
|
190 |
+
start = spacing/2
|
191 |
+
ticks = [start] + [start + spacing*i for i in range(1,len(labels))]
|
192 |
+
cbar.set_ticks(ticks=ticks, labels = labels)
|
193 |
+
|
194 |
+
st.pyplot(fig)
|
195 |
+
|
196 |
+
# save generated annotations
|
197 |
+
annotations = [labels[x] for x in st.session_state.smoothed_predictions]
|
198 |
+
annotations_df = pd.DataFrame(annotations, columns=['label'])
|
199 |
+
csv = annotations_df.to_csv(header=False).encode("utf-8")
|
200 |
+
output_file_name = st.text_input("Output File Name:","output")
|
201 |
+
st.download_button("Download annotations as .csv",
|
202 |
+
data=csv,
|
203 |
+
file_name=f"{output_file_name}.csv")
|