Spaces:
Running
Running
File size: 17,531 Bytes
6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib # For generating deterministic values from seed
# --- Helper: Entropy Estimator ---
class EntropyEstimator(nn.Module):
def __init__(self, d_model, hidden_dim=32, name=""):
super().__init__()
self.fc1 = nn.Linear(d_model, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)
self.name = name
self.debug_prints_enabled = True # Default to True for this module if needed
def forward(self, x, active_mask=None): # x: (batch, seq_len, d_model)
# Simplified masking logic for robustness
if x.numel() == 0:
return torch.tensor(0.0, device=x.device)
if active_mask is not None:
# Ensure active_mask is boolean and compatible shape for broadcasting/indexing
if active_mask.dtype != torch.bool:
active_mask = active_mask.bool()
if x.dim() == 3 and active_mask.dim() == 2 and x.shape[:2] == active_mask.shape:
# typical case: x is (B,S,D), active_mask is (B,S)
x_masked = x[active_mask] # This flattens to (N_active, D)
elif x.dim() == 2 and active_mask.dim() == 1 and x.shape[0] == active_mask.shape[0]:
# x is (S,D) or (B,D) - less common here, but handle
x_masked = x[active_mask]
else: # Fallback if mask shapes are unexpected, process all elements
# if self.debug_prints_enabled:
# print(f"Warning [{self.name}]: Mask shape mismatch (x: {x.shape}, mask: {active_mask.shape}). Processing all elements.")
x_masked = x.reshape(-1, x.size(-1))
else:
x_masked = x.reshape(-1, x.size(-1))
if x_masked.numel() == 0:
return torch.tensor(0.0, device=x.device)
h = F.relu(self.fc1(x_masked))
# Sigmoid output, then mean. Represents average "activity" or "confidence" as a proxy for entropy.
estimated_entropy = torch.sigmoid(self.fc2(h)).mean()
return estimated_entropy
# --- Helper: Seed Parser ---
class SeedParser:
def __init__(self, seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block):
self.seed_phrase = seed_phrase
self.seed_number_str = seed_number_str
self.d_model = d_model
self.num_adaptive_blocks = num_adaptive_blocks
self.num_sub_modules_per_block = num_sub_modules_per_block
self.debug_prints_enabled = True
if self.debug_prints_enabled:
print(f"--- SeedParser Initialization ---")
print(f" Seed Phrase (start): '{self.seed_phrase[:50]}...'")
print(f" Seed Number: {self.seed_number_str}")
phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest()
self.phrase_base_val = int(phrase_hash[:16], 16)
if self.debug_prints_enabled: print(f" Phrase Base Value (from hash): {self.phrase_base_val}")
self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
if not self.num_sequence: self.num_sequence = [sum(bytearray(seed_number_str.encode())) % 10]
if self.debug_prints_enabled: print(f" Numerical Sequence (from seed number): {self.num_sequence}")
self.init_map = self._generate_init_map()
if self.debug_prints_enabled:
print(f" SeedParser: Generated InitMap:")
for i, block_config in enumerate(self.init_map["block_configs"]):
gate_inits_str = [f'{g:.3f}' for g in block_config['initial_gate_proportions']]
print(f" Block {i}: Target Entropy: {block_config['target_entropy']:.4f}, Initial Gate Proportions: {gate_inits_str}")
if self.debug_prints_enabled: print(f"--- SeedParser Initialized ---")
def _get_deterministic_value(self, key_name, min_val, max_val, sequence_idx_offset=0):
key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16)
num_seq_val = 0
if self.num_sequence:
for i, digit in enumerate(self.num_sequence):
num_seq_val = (num_seq_val * 10 + digit) % 1000003
combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
if max_val == min_val: return min_val
val_range = max_val - min_val + 1
return min_val + int(abs(math.sin(float(combined_seed_val)) * 1e5)) % val_range
def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0):
key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16)
num_seq_val = 0
if self.num_sequence:
for i, digit in enumerate(self.num_sequence):
num_seq_val = (num_seq_val * 10 + digit) % 1000003
combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
norm_float = (math.sin(float(combined_seed_val) * 0.1) + 1.0) / 2.0
scaled_val = min_val + norm_float * (max_val - min_val)
return scaled_val
def _generate_init_map(self):
init_map = {"block_configs": []}
for i in range(self.num_adaptive_blocks):
gate_raw_scores = [
self._get_deterministic_float(f"block_{i}_gate_{j}_raw_score", -1.0, 1.0, sequence_idx_offset=i*10 + j)
for j in range(self.num_sub_modules_per_block)
]
if self.num_sub_modules_per_block > 0:
gate_initial_proportions = F.softmax(torch.tensor(gate_raw_scores), dim=0).tolist()
else:
gate_initial_proportions = []
target_entropy = self._get_deterministic_float(
f"block_{i}_target_entropy", 0.05, 0.35, sequence_idx_offset=i
)
init_map["block_configs"].append({
"initial_gate_proportions": gate_initial_proportions,
"raw_gate_scores_for_param_init": gate_raw_scores,
"target_entropy": target_entropy
})
return init_map
def get_block_config(self, block_idx):
if 0 <= block_idx < len(self.init_map["block_configs"]):
return self.init_map["block_configs"][block_idx]
return None
# --- Adaptive Block ---
class AdaptiveBlock(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout, seed_parser_config_for_block, block_idx, num_sub_modules=3):
super().__init__()
self.d_model = d_model
self.block_idx = block_idx
self.num_sub_modules = num_sub_modules
self.config_from_seed = seed_parser_config_for_block
self.debug_prints_enabled = True
if self.debug_prints_enabled:
print(f" Initializing AdaptiveBlock {self.block_idx} with seed config: TargetEntropy={self.config_from_seed['target_entropy']:.3f}, InitialGateProportions={[f'{g:.3f}' for g in self.config_from_seed['initial_gate_proportions']]}")
self.sub_module_0 = nn.MultiheadAttention(d_model, n_heads, dropout=dropout, batch_first=True)
self.sub_module_1 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, d_model))
self.sub_module_2 = nn.Sequential(nn.Linear(d_model, d_model // 2), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model // 2, d_model))
self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
if self.num_sub_modules > len(self.sub_modules):
print(f"Warning: block {self.block_idx} requested {self.num_sub_modules} sub_modules, but only {len(self.sub_modules)} defined. Using defined count.")
self.num_sub_modules = len(self.sub_modules)
raw_gate_param_inits = self.config_from_seed.get("raw_gate_scores_for_param_init", [0.0] * self.num_sub_modules if self.num_sub_modules > 0 else [])
if len(raw_gate_param_inits) != self.num_sub_modules:
print(f"Warning: Block {self.block_idx} raw_gate_scores length mismatch. Re-initializing to zeros.")
raw_gate_param_inits = [0.0] * self.num_sub_modules if self.num_sub_modules > 0 else []
self.gates_params = nn.Parameter(torch.tensor(raw_gate_param_inits, dtype=torch.float32))
self.initial_gate_proportions_tensor = torch.tensor(self.config_from_seed['initial_gate_proportions'], dtype=torch.float32)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.output_entropy_estimator = EntropyEstimator(d_model, name=f"Block{block_idx}_OutEntropy")
self.wiring_phase_active = False
def set_wiring_phase(self, active):
self.wiring_phase_active = active
# if self.debug_prints_enabled:
# phase_status = "ACTIVATED" if active else "DEACTIVATED"
# print(f" AdaptiveBlock {self.block_idx}: WIRING PHASE {phase_status}") # Made less verbose
def forward(self, x, key_padding_mask=None, attn_mask=None):
current_gates_softmax = F.softmax(self.gates_params, dim=0)
# if self.debug_prints_enabled: # Made less verbose
# print(f" AdaptiveBlock {self.block_idx} Input x: {x.shape}, Current Gates (softmax): {[f'{g.item():.3f}' for g in current_gates_softmax]}")
x_norm = self.norm1(x)
outputs = []
for i, module in enumerate(self.sub_modules):
if i >= self.num_sub_modules: break
if i == 0:
module_out, _ = module(x_norm, x_norm, x_norm, key_padding_mask=key_padding_mask, attn_mask=attn_mask, need_weights=False)
else:
module_out = module(x_norm)
outputs.append(module_out)
if not outputs:
if self.debug_prints_enabled: print(f" AdaptiveBlock {self.block_idx}: No sub_modules processed. Passing input through.")
final_out_unnorm = x
else:
stacked_outputs = torch.stack(outputs, dim=0)
weighted_sum = torch.sum(stacked_outputs * current_gates_softmax.view(-1, 1, 1, 1), dim=0)
final_out_unnorm = x + self.dropout(weighted_sum)
final_out_norm = self.norm2(final_out_unnorm)
current_output_entropy = self.output_entropy_estimator(final_out_norm, active_mask=~key_padding_mask if key_padding_mask is not None else None)
target_entropy_for_block = self.config_from_seed.get("target_entropy", 0.1)
if self.wiring_phase_active and self.training:
with torch.no_grad():
entropy_diff = current_output_entropy - target_entropy_for_block
adjustment_strength = 0.01
if entropy_diff > 0.05:
self.gates_params.data[1] += adjustment_strength
if self.num_sub_modules > 2: self.gates_params.data[2] += adjustment_strength
self.gates_params.data[0] -= adjustment_strength * 0.5
elif entropy_diff < -0.05:
self.gates_params.data[0] += adjustment_strength
self.gates_params.data[1] -= adjustment_strength * 0.5
if self.num_sub_modules > 2: self.gates_params.data[2] -= adjustment_strength * 0.5
self.gates_params.data.clamp_(-2.5, 2.5)
if self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} WIRING: OutEnt={current_output_entropy.item():.4f}, TgtEnt={target_entropy_for_block:.4f}, Δ={entropy_diff.item():.4f} -> New Gate Params (raw): {[f'{g.item():.3f}' for g in self.gates_params.data]}")
initial_gate_targets_on_device = self.initial_gate_proportions_tensor.to(self.gates_params.device)
return final_out_norm, current_output_entropy, current_gates_softmax, self.gates_params, initial_gate_targets_on_device
# --- Positional Encoding ---
class PositionalEncoding(nn.Module):
def __init__(self,d_model,dropout=0.1,max_len=512): # Default max_len is good
super().__init__()
self.dropout=nn.Dropout(p=dropout)
pe=torch.zeros(max_len,d_model)
pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model))
pe[:,0::2]=torch.sin(pos*div)
pe[:,1::2]=torch.cos(pos*div)
self.register_buffer('pe',pe.unsqueeze(0))
def forward(self,x):
# x: (batch, seq_len, d_model)
# self.pe: (1, max_len, d_model)
# We need to select the part of pe corresponding to x's seq_len
x=x+self.pe[:,:x.size(1),:]
return self.dropout(x)
# --- Main SWCK Model ---
class SWCKModel(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, d_ff, num_adaptive_blocks,
dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
super().__init__()
self.d_model = d_model
self.seed_phrase = seed_phrase
self.seed_number_str = seed_number_str
self.debug_prints_enabled = True
if self.debug_prints_enabled: print(f"--- Initializing SWCKModel ---")
self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block)
self.seed_parser.debug_prints_enabled = self.debug_prints_enabled
self.embedding = nn.Embedding(vocab_size, d_model)
# Corrected: PositionalEncoding uses its own default max_len or a hardcoded one.
# It does not depend on SEQ_LEN_APP from app.py.
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.adaptive_blocks = nn.ModuleList()
for i in range(num_adaptive_blocks):
block_config = self.seed_parser.get_block_config(i)
if block_config is None:
raise ValueError(f"Could not get seed config for block {i}")
new_block = AdaptiveBlock(d_model, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
new_block.debug_prints_enabled = self.debug_prints_enabled
self.adaptive_blocks.append(new_block)
if self.debug_prints_enabled: print(f" SWCKModel: Added AdaptiveBlock {i}")
self.fc_out = nn.Linear(d_model, vocab_size)
self.overall_output_entropy_estimator = EntropyEstimator(d_model, name="OverallOutEntropy")
self.overall_output_entropy_estimator.debug_prints_enabled = self.debug_prints_enabled
self._init_weights()
if self.debug_prints_enabled: print(f"--- SWCKModel Initialized (Vocab: {vocab_size}, d_model: {d_model}) ---")
def _init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc_out.bias.data.zero_()
self.fc_out.weight.data.uniform_(-initrange, initrange)
def set_wiring_phase(self, active):
if self.debug_prints_enabled:
# print(f"SWCKModel: Setting wiring phase to {active} for all blocks.") # Made less verbose
pass
for block in self.adaptive_blocks:
block.set_wiring_phase(active)
def forward(self, src_tokens, src_key_padding_mask=None):
# if self.debug_prints_enabled: # Made less verbose
# print(f"\n--- SWCKModel Forward Pass ---")
# print(f" Input src_tokens: {src_tokens.shape}")
# if src_key_padding_mask is not None: print(f" Input src_key_padding_mask: {src_key_padding_mask.shape} (True means pad)")
x = self.embedding(src_tokens) * math.sqrt(self.d_model)
x = self.pos_encoder(x)
# if self.debug_prints_enabled: print(f" After Embedding & PosEnc, x: {x.shape}") # Made less verbose
block_output_entropies = []
current_block_gate_softmaxes = []
current_block_gate_params = []
initial_block_gate_targets = []
for i, block in enumerate(self.adaptive_blocks):
# if self.debug_prints_enabled: print(f" Processing AdaptiveBlock {i}...") # Made less verbose
x, block_entropy, current_gate_softmax, current_gate_param, initial_gate_target = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)
block_output_entropies.append(block_entropy)
current_block_gate_softmaxes.append(current_gate_softmax)
current_block_gate_params.append(current_gate_param)
initial_block_gate_targets.append(initial_gate_target)
# if self.debug_prints_enabled: print(f" Output x from AdaptiveBlock {i}: {x.shape}, Entropy: {block_entropy.item():.4f}") # Made less verbose
logits = self.fc_out(x)
# if self.debug_prints_enabled: print(f" Output logits: {logits.shape}") # Made less verbose
final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None
overall_entropy = self.overall_output_entropy_estimator(x, active_mask=final_active_mask)
# if self.debug_prints_enabled: print(f" Overall Final Representation Entropy: {overall_entropy.item():.4f}") # Made less verbose
entropy_report = {
"block_output_entropies": block_output_entropies,
"overall_output_entropy": overall_entropy,
"current_block_gate_softmaxes": current_block_gate_softmaxes,
"current_block_gate_params": current_block_gate_params,
"initial_block_gate_targets": initial_block_gate_targets
}
return logits, entropy_report
|