Spaces:
Running
Running
File size: 21,599 Bytes
6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 6695a01 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 6695a01 d82b2bb 6695a01 d82b2bb 1722634 d82b2bb 1722634 d82b2bb 1722634 d82b2bb 1722634 d82b2bb 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 d82b2bb 6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 1722634 6695a01 1722634 d82b2bb 1722634 6695a01 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 d82b2bb 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 d82b2bb 1722634 d82b2bb 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 6695a01 1722634 6695a01 1722634 6695a01 d82b2bb 6695a01 1722634 d82b2bb 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 d82b2bb 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 6695a01 1722634 d82b2bb 6695a01 d82b2bb 1722634 6695a01 1722634 d82b2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib
# --- Future Entropy Predictor (FEP) ---
# (No changes from V4)
class FutureEntropyPredictor(nn.Module):
def __init__(self, input_dim=2, hidden_dim=16, output_dim=1, name=""):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.name = name
self.debug_prints_enabled = False
def forward(self, current_block_entropy, current_static_target_diff):
if not torch.is_tensor(current_block_entropy):
current_block_entropy = torch.tensor([current_block_entropy], device=self.fc1.weight.device, dtype=torch.float32)
if not torch.is_tensor(current_static_target_diff):
current_static_target_diff = torch.tensor([current_static_target_diff], device=self.fc1.weight.device, dtype=torch.float32)
current_block_entropy = current_block_entropy.view(-1, 1)
current_static_target_diff = current_static_target_diff.view(-1, 1)
x_in = torch.cat((current_block_entropy, current_static_target_diff), dim=1)
h = F.relu(self.fc1(x_in))
predicted_delta_factor_raw = self.fc2(h)
return predicted_delta_factor_raw.squeeze(-1)
# --- Helper: Entropy Estimator ---
# (No changes from V4)
class EntropyEstimator(nn.Module):
def __init__(self, d_model, hidden_dim=32, name=""):
super().__init__()
self.fc1 = nn.Linear(d_model, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)
self.name = name
self.debug_prints_enabled = False
def forward(self, x, active_mask=None):
if x.numel() == 0: return torch.tensor(0.0, device=x.device)
if active_mask is not None:
if active_mask.dtype != torch.bool: active_mask = active_mask.bool()
if x.dim() == 3 and active_mask.dim() == 2 and x.shape[:2] == active_mask.shape: x_masked = x[active_mask]
elif x.dim() == 2 and active_mask.dim() == 1 and x.shape[0] == active_mask.shape[0]: x_masked = x[active_mask]
else: x_masked = x.reshape(-1, x.size(-1))
else: x_masked = x.reshape(-1, x.size(-1))
if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
h = F.relu(self.fc1(x_masked)); return torch.sigmoid(self.fc2(h)).mean()
# --- Helper: Seed Parser ---
# (No changes from V4)
class SeedParser:
def __init__(self, seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block):
self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str; self.d_model = d_model
self.num_adaptive_blocks = num_adaptive_blocks; self.num_sub_modules_per_block = num_sub_modules_per_block
self.debug_prints_enabled = True
if self.debug_prints_enabled: print(f"--- SeedParser Initialization ---\n Seed Phrase (start): '{self.seed_phrase[:50]}...'\n Seed Number: {self.seed_number_str}")
phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest(); self.phrase_base_val = int(phrase_hash[:16], 16)
if self.debug_prints_enabled: print(f" Phrase Base Value (from hash): {self.phrase_base_val}")
self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
if not self.num_sequence: self.num_sequence = [sum(bytearray(seed_number_str.encode())) % 10]
if self.debug_prints_enabled: print(f" Numerical Sequence (from seed number): {self.num_sequence}")
self.init_map = self._generate_init_map()
if self.debug_prints_enabled:
print(f" SeedParser: Generated InitMap:")
for i, block_config in enumerate(self.init_map["block_configs"]):
gate_inits_str = [f'{g:.3f}' for g in block_config['initial_gate_proportions']]
raw_gate_scores_str = [f'{g:.3f}' for g in block_config['raw_gate_scores_for_param_init']]
print(f" Block {i}: Target Entropy: {block_config['target_entropy']:.4f}, RawGateScores: {raw_gate_scores_str}, InitialGateProps (softmax): {gate_inits_str}")
if self.debug_prints_enabled: print(f"--- SeedParser Initialized ---")
def _get_deterministic_value(self, key_name, min_val, max_val, sequence_idx_offset=0): # ... (same as V4)
key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
if self.num_sequence:
for i, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit) % 1000003
combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
if max_val == min_val: return min_val
val_range = max_val - min_val + 1
return min_val + int(abs(math.sin(float(combined_seed_val)) * 1e5)) % int(val_range)
def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0): # ... (same as V4)
key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
if self.num_sequence:
for i, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit) % 1000003
combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
norm_float = (math.sin(float(combined_seed_val) * 0.1) + 1.0) / 2.0
return min_val + norm_float * (max_val - min_val)
def _generate_init_map(self): # ... (same as V4, but remember initial_gate_proportions are softmax based)
init_map = {"block_configs": []}
for i in range(self.num_adaptive_blocks):
gate_raw_scores = [self._get_deterministic_float(f"block_{i}_gate_{j}_raw_score", -1.5, 1.5, sequence_idx_offset=i*10 + j) for j in range(self.num_sub_modules_per_block)]
gate_initial_proportions = F.softmax(torch.tensor(gate_raw_scores), dim=0).tolist() if self.num_sub_modules_per_block > 0 else []
target_entropy = self._get_deterministic_float(f"block_{i}_target_entropy", 0.15, 0.45, sequence_idx_offset=i)
init_map["block_configs"].append({"initial_gate_proportions": gate_initial_proportions, "raw_gate_scores_for_param_init": gate_raw_scores, "target_entropy": target_entropy})
return init_map
def get_block_config(self, block_idx): # ... (same as V4)
if 0 <= block_idx < len(self.init_map["block_configs"]): return self.init_map["block_configs"][block_idx]
return None
# --- Adaptive Block (V5 changes) ---
class AdaptiveBlock(nn.Module):
MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE = 0.05
INITIAL_HEURISTIC_STRENGTH = 0.025 # V5: Start strength for heuristic
FINAL_HEURISTIC_STRENGTH = 0.005 # V5: End strength for heuristic
def __init__(self, d_model, n_heads, d_ff, dropout, seed_parser_config_for_block, block_idx, num_sub_modules=3):
super().__init__()
self.d_model = d_model; self.block_idx = block_idx; self.num_sub_modules = num_sub_modules
self.config_from_seed = seed_parser_config_for_block; self.debug_prints_enabled = True
raw_gate_param_inits_list = self.config_from_seed.get("raw_gate_scores_for_param_init", [0.0] * self.num_sub_modules)
if len(raw_gate_param_inits_list) != self.num_sub_modules:
raw_gate_param_inits_list = [0.0] * self.num_sub_modules
self.gates_params = nn.Parameter(torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
# V5: Store initial raw scores as a buffer for alignment loss
self.register_buffer('initial_raw_gate_scores_buffer', torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
if self.debug_prints_enabled:
raw_gate_scores_str = [f'{g:.3f}' for g in raw_gate_param_inits_list]
print(f" Initializing AdaptiveBlock {self.block_idx} with seed config: StaticSeedTgtEnt={self.config_from_seed['target_entropy']:.3f}, InitialRawGateScores={raw_gate_scores_str}")
self.sub_module_0 = nn.MultiheadAttention(d_model, n_heads, dropout=dropout, batch_first=True)
self.sub_module_1 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, d_model))
self.sub_module_2 = nn.Sequential(nn.Linear(d_model, d_model), nn.GELU(), nn.Dropout(dropout))
self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
if self.num_sub_modules > len(self.sub_modules): self.num_sub_modules = len(self.sub_modules)
elif self.num_sub_modules <= 0: raise ValueError(f"AdaptiveBlock {self.block_idx} must have at least one sub_module.")
self.norm1 = nn.LayerNorm(d_model); self.norm2 = nn.LayerNorm(d_model)
self.dropout_layer = nn.Dropout(dropout) # V5 Renamed from self.dropout to avoid conflict
self.output_entropy_estimator = EntropyEstimator(d_model, name=f"Block{block_idx}_OutEntropy")
self.fep = FutureEntropyPredictor(input_dim=2, hidden_dim=16, output_dim=1, name=f"Block{block_idx}_FEP")
self.wiring_phase_active = False
self.static_seed_target_entropy = self.config_from_seed.get("target_entropy", 0.25)
self.current_epoch_in_wiring = 0 # V5
self.total_wiring_epochs = 1 # V5: Default to 1 to prevent division by zero if not set
# V5: set_wiring_phase now takes epoch info for decaying strength
def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
self.wiring_phase_active = active
if active:
self.current_epoch_in_wiring = current_epoch_num
self.total_wiring_epochs = total_wiring_epochs if total_wiring_epochs > 0 else 1
def _get_current_heuristic_strength(self):
if not self.wiring_phase_active or self.total_wiring_epochs <= 1:
return self.INITIAL_HEURISTIC_STRENGTH # Or some default if not wiring
# Linear decay from INITIAL to FINAL strength over total_wiring_epochs
progress = min(self.current_epoch_in_wiring / (self.total_wiring_epochs -1 ), 1.0) if self.total_wiring_epochs >1 else 1.0
decayed_strength = self.INITIAL_HEURISTIC_STRENGTH - progress * (self.INITIAL_HEURISTIC_STRENGTH - self.FINAL_HEURISTIC_STRENGTH)
return decayed_strength
def forward(self, x, key_padding_mask=None, attn_mask=None):
# V5: Sigmoid activations
current_gates_activations = torch.sigmoid(self.gates_params)
if self.debug_prints_enabled and self.wiring_phase_active:
print(f" AdaptiveBlock {self.block_idx} (Wiring ON, Epoch {self.current_epoch_in_wiring+1}/{self.total_wiring_epochs}) Input x: {x.shape}, RawG: {[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG: {[f'{s.item():.3f}' for s in current_gates_activations.data]}")
x_norm_submodules = self.norm1(x)
outputs = []
for i, module_instance in enumerate(self.sub_modules):
if i >= self.num_sub_modules: break
if i == 0: module_out, _ = module_instance(x_norm_submodules, x_norm_submodules, x_norm_submodules, key_padding_mask=key_padding_mask, attn_mask=attn_mask, need_weights=False)
else: module_out = module_instance(x_norm_submodules)
outputs.append(module_out * current_gates_activations[i]) # V5: Apply sigmoid activation here
if not outputs: final_out_unnorm = x
else:
# V5: Summing activated outputs (no further multiplication by gates needed here as it's done above)
weighted_sum = torch.sum(torch.stack(outputs, dim=0), dim=0)
final_out_unnorm = x + self.dropout_layer(weighted_sum)
final_out_norm = self.norm2(final_out_unnorm)
current_output_entropy = self.output_entropy_estimator(final_out_norm, active_mask=~key_padding_mask if key_padding_mask is not None else None)
current_static_target_diff = current_output_entropy - self.static_seed_target_entropy
dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy
predicted_delta_factor_for_report = torch.tensor(0.0, device=x.device)
if self.wiring_phase_active and self.training:
predicted_delta_factor_raw = self.fep(current_output_entropy.detach(), current_static_target_diff.detach())
predicted_delta_factor_tanh = torch.tanh(predicted_delta_factor_raw)
dynamic_adjustment = predicted_delta_factor_tanh * self.MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE
dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy + dynamic_adjustment.item()
dynamic_target_entropy_for_heuristic = max(0.01, min(0.99, dynamic_target_entropy_for_heuristic))
predicted_delta_factor_for_report = predicted_delta_factor_tanh
with torch.no_grad():
entropy_diff_for_heuristic = current_output_entropy - dynamic_target_entropy_for_heuristic
# V5: Decaying heuristic strength
base_adjustment_strength = self._get_current_heuristic_strength()
adaptive_strength_factor = min(max(abs(entropy_diff_for_heuristic.item()) * 7.0, 0.3), 2.5)
adjustment_strength = base_adjustment_strength * adaptive_strength_factor
if self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} WIRING PRE-ADJUST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in current_gates_activations.data]}")
print(f" OutEnt={current_output_entropy.item():.4f}, StaticTgtEnt={self.static_seed_target_entropy:.4f}, FEPΔFactor={predicted_delta_factor_tanh.item():.4f}, DynTgtEnt={dynamic_target_entropy_for_heuristic:.4f}, ED_Dyn={entropy_diff_for_heuristic.item():.4f}, BaseHeurStr={base_adjustment_strength:.4f} AdjStr={adjustment_strength:.4f}")
if entropy_diff_for_heuristic.item() > 1e-4:
self.gates_params.data[0] -= adjustment_strength
self.gates_params.data[1] += adjustment_strength * 0.6
if self.num_sub_modules > 2: self.gates_params.data[2] += adjustment_strength * 0.4
elif entropy_diff_for_heuristic.item() < -1e-4:
self.gates_params.data[0] += adjustment_strength
self.gates_params.data[1] -= adjustment_strength * 0.6
if self.num_sub_modules > 2: self.gates_params.data[2] -= adjustment_strength * 0.4
self.gates_params.data.clamp_(-3.5, 3.5)
if self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} WIRING POST-ADJUST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in torch.sigmoid(self.gates_params.data)]}")
# V5: Return sigmoid activations
return final_out_norm, current_output_entropy, current_gates_activations, self.gates_params.data.clone(), predicted_delta_factor_for_report, torch.tensor(dynamic_target_entropy_for_heuristic, device=x.device)
# --- Positional Encoding ---
# (No changes from V4)
class PositionalEncoding(nn.Module): # ... (same as V4)
def __init__(self,d_model,dropout=0.1,max_len=512): super().__init__(); self.dropout=nn.Dropout(p=dropout); pe=torch.zeros(max_len,d_model); pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1); div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model)); pe[:,0::2]=torch.sin(pos*div); pe[:,1::2]=torch.cos(pos*div); self.register_buffer('pe',pe.unsqueeze(0))
def forward(self,x): x=x+self.pe[:,:x.size(1),:]; return self.dropout(x)
# --- Main SWCK Model (V5 changes) ---
class SWCKModel(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, d_ff, num_adaptive_blocks,
dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
super().__init__()
self.d_model = d_model; self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str
self.debug_prints_enabled = True
if self.debug_prints_enabled: print(f"--- Initializing SWCKModel (V5) ---")
self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block)
self.seed_parser.debug_prints_enabled = self.debug_prints_enabled
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.adaptive_blocks = nn.ModuleList()
for i in range(num_adaptive_blocks):
block_config = self.seed_parser.get_block_config(i)
if block_config is None: raise ValueError(f"SWCKModel Error: Could not get seed config for block {i}")
new_block = AdaptiveBlock(d_model, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
new_block.debug_prints_enabled = self.debug_prints_enabled
self.adaptive_blocks.append(new_block)
if self.debug_prints_enabled: print(f" SWCKModel: Added AdaptiveBlock {i} (V5 with Sigmoid Gates, Decaying Heuristic)")
self.fc_out = nn.Linear(d_model, vocab_size)
self.overall_output_entropy_estimator = EntropyEstimator(d_model, name="OverallOutEntropy")
self.overall_output_entropy_estimator.debug_prints_enabled = False
self._init_weights()
if self.debug_prints_enabled: print(f"--- SWCKModel V5 Initialized (Vocab: {vocab_size}, d_model: {d_model}, Blocks: {num_adaptive_blocks}x{num_sub_modules_per_block}sub) ---")
def _init_weights(self): # ... (same as V4)
initrange = 0.1; self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc_out.bias.data.zero_(); self.fc_out.weight.data.uniform_(-initrange, initrange)
# V5: set_wiring_phase now takes epoch info
def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
if self.debug_prints_enabled:
print(f"SWCKModel: Setting wiring phase to {active} for all blocks (Epoch {current_epoch_num+1}/{total_wiring_epochs} of wiring if active).")
for block in self.adaptive_blocks:
block.set_wiring_phase(active, current_epoch_num, total_wiring_epochs)
def forward(self, src_tokens, src_key_padding_mask=None):
if self.debug_prints_enabled:
print(f"\n--- SWCKModel Forward Pass (Training: {self.training}) ---")
print(f" Input src_tokens: {src_tokens.shape}")
if src_key_padding_mask is not None: print(f" Input src_key_padding_mask: {src_key_padding_mask.shape} (True means pad)")
x = self.embedding(src_tokens) * math.sqrt(self.d_model)
x = self.pos_encoder(x)
if self.debug_prints_enabled: print(f" After Embedding & PosEnc, x: {x.shape}")
block_output_entropies = []
current_block_gate_activations = [] # V5: Changed from softmaxes
current_block_gate_raw_params = []
fep_predicted_delta_factors = []
dynamic_target_entropies_used = []
for i, block in enumerate(self.adaptive_blocks):
if self.debug_prints_enabled: print(f" Processing AdaptiveBlock {i}...")
# V5 AdaptiveBlock returns sigmoid activations
x, block_entropy, current_gate_acts, raw_gate_params, fep_delta, dyn_target_ent = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)
block_output_entropies.append(block_entropy)
current_block_gate_activations.append(current_gate_acts) # V5
current_block_gate_raw_params.append(raw_gate_params)
fep_predicted_delta_factors.append(fep_delta)
dynamic_target_entropies_used.append(dyn_target_ent)
if self.debug_prints_enabled:
acts_str = [f'{act.item():.3f}' for act in current_gate_acts] # V5
raw_str = [f'{rp.item():.3f}' for rp in raw_gate_params]
fep_delta_str = f"{fep_delta.item():.3f}" if torch.is_tensor(fep_delta) else "N/A"
dyn_target_str = f"{dyn_target_ent.item():.3f}" if torch.is_tensor(dyn_target_ent) else "N/A"
print(f" Output x from Block {i}: {x.shape}, MeasEnt: {block_entropy.item():.4f}, FEPΔFactor: {fep_delta_str}, DynTgtUsed: {dyn_target_str}, SigmoidG: {acts_str}, RawG: {raw_str}") # V5
logits = self.fc_out(x)
if self.debug_prints_enabled: print(f" Output logits: {logits.shape}")
final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None
overall_entropy = self.overall_output_entropy_estimator(x, active_mask=final_active_mask)
if self.debug_prints_enabled: print(f" Overall Final Representation Entropy: {overall_entropy.item():.4f}")
entropy_report = {
"block_output_entropies": block_output_entropies,
"overall_output_entropy": overall_entropy,
"current_block_gate_activations": current_block_gate_activations, # V5
"current_block_gate_params": current_block_gate_raw_params,
# "initial_block_gate_targets" (softmax based) is removed from report as it's less relevant with sigmoid gates
# The alignment loss will use the initial_raw_gate_scores_buffer directly from the block.
"fep_predicted_delta_factors": fep_predicted_delta_factors,
"dynamic_target_entropies_used": dynamic_target_entropies_used
}
if self.debug_prints_enabled: print(f"--- SWCKModel Forward Pass Complete ---")
return logits, entropy_report
|