File size: 21,599 Bytes
6695a01
 
 
 
1722634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6695a01
 
1722634
6695a01
d82b2bb
6695a01
 
 
 
1722634
 
 
d82b2bb
1722634
 
 
 
 
 
 
6695a01
 
1722634
6695a01
 
1722634
 
6695a01
1722634
 
6695a01
 
d82b2bb
6695a01
 
 
d82b2bb
6695a01
d82b2bb
1722634
 
d82b2bb
1722634
 
d82b2bb
1722634
d82b2bb
 
 
1722634
 
 
d82b2bb
1722634
d82b2bb
 
1722634
 
6695a01
 
1722634
 
 
 
6695a01
1722634
 
6695a01
 
1722634
6695a01
1722634
 
 
 
d82b2bb
6695a01
1722634
 
 
 
 
 
 
 
 
6695a01
 
1722634
 
6695a01
 
d82b2bb
1722634
6695a01
1722634
 
d82b2bb
1722634
 
6695a01
1722634
 
d82b2bb
1722634
 
 
6695a01
1722634
 
6695a01
1722634
 
 
 
 
 
 
 
 
 
 
 
 
6695a01
d82b2bb
1722634
 
 
 
 
6695a01
1722634
6695a01
1722634
d82b2bb
1722634
 
 
 
 
d82b2bb
1722634
 
 
6695a01
 
 
1722634
 
 
6695a01
d82b2bb
1722634
 
 
 
 
 
 
d82b2bb
1722634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d82b2bb
1722634
 
 
 
 
6695a01
1722634
 
6695a01
 
1722634
 
 
 
 
 
6695a01
d82b2bb
6695a01
 
1722634
6695a01
1722634
6695a01
d82b2bb
6695a01
 
 
 
 
1722634
d82b2bb
 
 
1722634
6695a01
 
1722634
6695a01
1722634
6695a01
1722634
 
 
6695a01
1722634
 
6695a01
1722634
6695a01
1722634
6695a01
 
1722634
 
 
 
6695a01
 
1722634
6695a01
 
1722634
 
 
 
d82b2bb
6695a01
1722634
 
 
 
6695a01
1722634
 
 
 
6695a01
1722634
 
 
 
 
 
6695a01
1722634
 
6695a01
 
1722634
d82b2bb
6695a01
d82b2bb
 
1722634
 
 
 
 
 
6695a01
1722634
d82b2bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib

# --- Future Entropy Predictor (FEP) ---
# (No changes from V4)
class FutureEntropyPredictor(nn.Module):
    def __init__(self, input_dim=2, hidden_dim=16, output_dim=1, name=""):
        super().__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)
        self.name = name
        self.debug_prints_enabled = False

    def forward(self, current_block_entropy, current_static_target_diff):
        if not torch.is_tensor(current_block_entropy):
            current_block_entropy = torch.tensor([current_block_entropy], device=self.fc1.weight.device, dtype=torch.float32)
        if not torch.is_tensor(current_static_target_diff):
            current_static_target_diff = torch.tensor([current_static_target_diff], device=self.fc1.weight.device, dtype=torch.float32)
        current_block_entropy = current_block_entropy.view(-1, 1)
        current_static_target_diff = current_static_target_diff.view(-1, 1)
        x_in = torch.cat((current_block_entropy, current_static_target_diff), dim=1)
        h = F.relu(self.fc1(x_in))
        predicted_delta_factor_raw = self.fc2(h)
        return predicted_delta_factor_raw.squeeze(-1)

# --- Helper: Entropy Estimator ---
# (No changes from V4)
class EntropyEstimator(nn.Module):
    def __init__(self, d_model, hidden_dim=32, name=""):
        super().__init__()
        self.fc1 = nn.Linear(d_model, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, 1)
        self.name = name
        self.debug_prints_enabled = False
    def forward(self, x, active_mask=None):
        if x.numel() == 0: return torch.tensor(0.0, device=x.device)
        if active_mask is not None:
            if active_mask.dtype != torch.bool: active_mask = active_mask.bool()
            if x.dim() == 3 and active_mask.dim() == 2 and x.shape[:2] == active_mask.shape: x_masked = x[active_mask]
            elif x.dim() == 2 and active_mask.dim() == 1 and x.shape[0] == active_mask.shape[0]: x_masked = x[active_mask]
            else: x_masked = x.reshape(-1, x.size(-1))
        else: x_masked = x.reshape(-1, x.size(-1))
        if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
        h = F.relu(self.fc1(x_masked)); return torch.sigmoid(self.fc2(h)).mean()

# --- Helper: Seed Parser ---
# (No changes from V4)
class SeedParser:
    def __init__(self, seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block):
        self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str; self.d_model = d_model
        self.num_adaptive_blocks = num_adaptive_blocks; self.num_sub_modules_per_block = num_sub_modules_per_block
        self.debug_prints_enabled = True
        if self.debug_prints_enabled: print(f"--- SeedParser Initialization ---\n  Seed Phrase (start): '{self.seed_phrase[:50]}...'\n  Seed Number: {self.seed_number_str}")
        phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest(); self.phrase_base_val = int(phrase_hash[:16], 16)
        if self.debug_prints_enabled: print(f"  Phrase Base Value (from hash): {self.phrase_base_val}")
        self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
        if not self.num_sequence: self.num_sequence = [sum(bytearray(seed_number_str.encode())) % 10]
        if self.debug_prints_enabled: print(f"  Numerical Sequence (from seed number): {self.num_sequence}")
        self.init_map = self._generate_init_map()
        if self.debug_prints_enabled:
            print(f"  SeedParser: Generated InitMap:")
            for i, block_config in enumerate(self.init_map["block_configs"]):
                gate_inits_str = [f'{g:.3f}' for g in block_config['initial_gate_proportions']]
                raw_gate_scores_str = [f'{g:.3f}' for g in block_config['raw_gate_scores_for_param_init']]
                print(f"    Block {i}: Target Entropy: {block_config['target_entropy']:.4f}, RawGateScores: {raw_gate_scores_str}, InitialGateProps (softmax): {gate_inits_str}")
        if self.debug_prints_enabled: print(f"--- SeedParser Initialized ---")
    def _get_deterministic_value(self, key_name, min_val, max_val, sequence_idx_offset=0): # ... (same as V4)
        key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
        if self.num_sequence:
            for i, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit) % 1000003
        combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
        if max_val == min_val: return min_val
        val_range = max_val - min_val + 1
        return min_val + int(abs(math.sin(float(combined_seed_val)) * 1e5)) % int(val_range)
    def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0): # ... (same as V4)
        key_specific_hash = int(hashlib.sha256(key_name.encode() + self.seed_phrase.encode()).hexdigest()[:8], 16); num_seq_val = 0
        if self.num_sequence:
            for i, digit in enumerate(self.num_sequence): num_seq_val = (num_seq_val * 10 + digit) % 1000003
        combined_seed_val = self.phrase_base_val + key_specific_hash + num_seq_val + sequence_idx_offset
        norm_float = (math.sin(float(combined_seed_val) * 0.1) + 1.0) / 2.0
        return min_val + norm_float * (max_val - min_val)
    def _generate_init_map(self): # ... (same as V4, but remember initial_gate_proportions are softmax based)
        init_map = {"block_configs": []}
        for i in range(self.num_adaptive_blocks):
            gate_raw_scores = [self._get_deterministic_float(f"block_{i}_gate_{j}_raw_score", -1.5, 1.5, sequence_idx_offset=i*10 + j) for j in range(self.num_sub_modules_per_block)]
            gate_initial_proportions = F.softmax(torch.tensor(gate_raw_scores), dim=0).tolist() if self.num_sub_modules_per_block > 0 else []
            target_entropy = self._get_deterministic_float(f"block_{i}_target_entropy", 0.15, 0.45, sequence_idx_offset=i)
            init_map["block_configs"].append({"initial_gate_proportions": gate_initial_proportions, "raw_gate_scores_for_param_init": gate_raw_scores, "target_entropy": target_entropy})
        return init_map
    def get_block_config(self, block_idx): # ... (same as V4)
        if 0 <= block_idx < len(self.init_map["block_configs"]): return self.init_map["block_configs"][block_idx]
        return None

# --- Adaptive Block (V5 changes) ---
class AdaptiveBlock(nn.Module):
    MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE = 0.05
    INITIAL_HEURISTIC_STRENGTH = 0.025 # V5: Start strength for heuristic
    FINAL_HEURISTIC_STRENGTH = 0.005   # V5: End strength for heuristic

    def __init__(self, d_model, n_heads, d_ff, dropout, seed_parser_config_for_block, block_idx, num_sub_modules=3):
        super().__init__()
        self.d_model = d_model; self.block_idx = block_idx; self.num_sub_modules = num_sub_modules
        self.config_from_seed = seed_parser_config_for_block; self.debug_prints_enabled = True

        raw_gate_param_inits_list = self.config_from_seed.get("raw_gate_scores_for_param_init", [0.0] * self.num_sub_modules)
        if len(raw_gate_param_inits_list) != self.num_sub_modules:
            raw_gate_param_inits_list = [0.0] * self.num_sub_modules
        self.gates_params = nn.Parameter(torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))
        # V5: Store initial raw scores as a buffer for alignment loss
        self.register_buffer('initial_raw_gate_scores_buffer', torch.tensor(raw_gate_param_inits_list, dtype=torch.float32))

        if self.debug_prints_enabled:
            raw_gate_scores_str = [f'{g:.3f}' for g in raw_gate_param_inits_list]
            print(f"  Initializing AdaptiveBlock {self.block_idx} with seed config: StaticSeedTgtEnt={self.config_from_seed['target_entropy']:.3f}, InitialRawGateScores={raw_gate_scores_str}")

        self.sub_module_0 = nn.MultiheadAttention(d_model, n_heads, dropout=dropout, batch_first=True)
        self.sub_module_1 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, d_model))
        self.sub_module_2 = nn.Sequential(nn.Linear(d_model, d_model), nn.GELU(), nn.Dropout(dropout))
        self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
        if self.num_sub_modules > len(self.sub_modules): self.num_sub_modules = len(self.sub_modules)
        elif self.num_sub_modules <= 0: raise ValueError(f"AdaptiveBlock {self.block_idx} must have at least one sub_module.")

        self.norm1 = nn.LayerNorm(d_model); self.norm2 = nn.LayerNorm(d_model)
        self.dropout_layer = nn.Dropout(dropout) # V5 Renamed from self.dropout to avoid conflict
        self.output_entropy_estimator = EntropyEstimator(d_model, name=f"Block{block_idx}_OutEntropy")
        self.fep = FutureEntropyPredictor(input_dim=2, hidden_dim=16, output_dim=1, name=f"Block{block_idx}_FEP")

        self.wiring_phase_active = False
        self.static_seed_target_entropy = self.config_from_seed.get("target_entropy", 0.25)
        self.current_epoch_in_wiring = 0 # V5
        self.total_wiring_epochs = 1     # V5: Default to 1 to prevent division by zero if not set

    # V5: set_wiring_phase now takes epoch info for decaying strength
    def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
        self.wiring_phase_active = active
        if active:
            self.current_epoch_in_wiring = current_epoch_num
            self.total_wiring_epochs = total_wiring_epochs if total_wiring_epochs > 0 else 1

    def _get_current_heuristic_strength(self):
        if not self.wiring_phase_active or self.total_wiring_epochs <= 1:
            return self.INITIAL_HEURISTIC_STRENGTH # Or some default if not wiring

        # Linear decay from INITIAL to FINAL strength over total_wiring_epochs
        progress = min(self.current_epoch_in_wiring / (self.total_wiring_epochs -1 ), 1.0) if self.total_wiring_epochs >1 else 1.0

        decayed_strength = self.INITIAL_HEURISTIC_STRENGTH - progress * (self.INITIAL_HEURISTIC_STRENGTH - self.FINAL_HEURISTIC_STRENGTH)
        return decayed_strength

    def forward(self, x, key_padding_mask=None, attn_mask=None):
        # V5: Sigmoid activations
        current_gates_activations = torch.sigmoid(self.gates_params)

        if self.debug_prints_enabled and self.wiring_phase_active:
            print(f"    AdaptiveBlock {self.block_idx} (Wiring ON, Epoch {self.current_epoch_in_wiring+1}/{self.total_wiring_epochs}) Input x: {x.shape}, RawG: {[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG: {[f'{s.item():.3f}' for s in current_gates_activations.data]}")

        x_norm_submodules = self.norm1(x)
        outputs = []
        for i, module_instance in enumerate(self.sub_modules):
            if i >= self.num_sub_modules: break
            if i == 0: module_out, _ = module_instance(x_norm_submodules, x_norm_submodules, x_norm_submodules, key_padding_mask=key_padding_mask, attn_mask=attn_mask, need_weights=False)
            else: module_out = module_instance(x_norm_submodules)
            outputs.append(module_out * current_gates_activations[i]) # V5: Apply sigmoid activation here

        if not outputs: final_out_unnorm = x
        else:
            # V5: Summing activated outputs (no further multiplication by gates needed here as it's done above)
            weighted_sum = torch.sum(torch.stack(outputs, dim=0), dim=0)
            final_out_unnorm = x + self.dropout_layer(weighted_sum)

        final_out_norm = self.norm2(final_out_unnorm)
        current_output_entropy = self.output_entropy_estimator(final_out_norm, active_mask=~key_padding_mask if key_padding_mask is not None else None)
        current_static_target_diff = current_output_entropy - self.static_seed_target_entropy
        dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy
        predicted_delta_factor_for_report = torch.tensor(0.0, device=x.device)

        if self.wiring_phase_active and self.training:
            predicted_delta_factor_raw = self.fep(current_output_entropy.detach(), current_static_target_diff.detach())
            predicted_delta_factor_tanh = torch.tanh(predicted_delta_factor_raw)
            dynamic_adjustment = predicted_delta_factor_tanh * self.MAX_DYNAMIC_ENTROPY_ADJUSTMENT_RANGE
            dynamic_target_entropy_for_heuristic = self.static_seed_target_entropy + dynamic_adjustment.item()
            dynamic_target_entropy_for_heuristic = max(0.01, min(0.99, dynamic_target_entropy_for_heuristic))
            predicted_delta_factor_for_report = predicted_delta_factor_tanh

            with torch.no_grad():
                entropy_diff_for_heuristic = current_output_entropy - dynamic_target_entropy_for_heuristic
                # V5: Decaying heuristic strength
                base_adjustment_strength = self._get_current_heuristic_strength()
                adaptive_strength_factor = min(max(abs(entropy_diff_for_heuristic.item()) * 7.0, 0.3), 2.5)
                adjustment_strength = base_adjustment_strength * adaptive_strength_factor

                if self.debug_prints_enabled:
                    print(f"    AdaptiveBlock {self.block_idx} WIRING PRE-ADJUST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in current_gates_activations.data]}")
                    print(f"      OutEnt={current_output_entropy.item():.4f}, StaticTgtEnt={self.static_seed_target_entropy:.4f}, FEPΔFactor={predicted_delta_factor_tanh.item():.4f}, DynTgtEnt={dynamic_target_entropy_for_heuristic:.4f}, ED_Dyn={entropy_diff_for_heuristic.item():.4f}, BaseHeurStr={base_adjustment_strength:.4f} AdjStr={adjustment_strength:.4f}")

                if entropy_diff_for_heuristic.item() > 1e-4:
                    self.gates_params.data[0] -= adjustment_strength
                    self.gates_params.data[1] += adjustment_strength * 0.6
                    if self.num_sub_modules > 2: self.gates_params.data[2] += adjustment_strength * 0.4
                elif entropy_diff_for_heuristic.item() < -1e-4:
                    self.gates_params.data[0] += adjustment_strength
                    self.gates_params.data[1] -= adjustment_strength * 0.6
                    if self.num_sub_modules > 2: self.gates_params.data[2] -= adjustment_strength * 0.4
                self.gates_params.data.clamp_(-3.5, 3.5)
                if self.debug_prints_enabled:
                    print(f"    AdaptiveBlock {self.block_idx} WIRING POST-ADJUST: RawG={[f'{g.item():.3f}' for g in self.gates_params.data]}, SigmoidG={[f'{s.item():.3f}' for s in torch.sigmoid(self.gates_params.data)]}")

        # V5: Return sigmoid activations
        return final_out_norm, current_output_entropy, current_gates_activations, self.gates_params.data.clone(), predicted_delta_factor_for_report, torch.tensor(dynamic_target_entropy_for_heuristic, device=x.device)

# --- Positional Encoding ---
# (No changes from V4)
class PositionalEncoding(nn.Module): # ... (same as V4)
    def __init__(self,d_model,dropout=0.1,max_len=512): super().__init__(); self.dropout=nn.Dropout(p=dropout); pe=torch.zeros(max_len,d_model); pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1); div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model)); pe[:,0::2]=torch.sin(pos*div); pe[:,1::2]=torch.cos(pos*div); self.register_buffer('pe',pe.unsqueeze(0))
    def forward(self,x): x=x+self.pe[:,:x.size(1),:]; return self.dropout(x)

# --- Main SWCK Model (V5 changes) ---
class SWCKModel(nn.Module):
    def __init__(self, vocab_size, d_model, n_heads, d_ff, num_adaptive_blocks,
                 dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
        super().__init__()
        self.d_model = d_model; self.seed_phrase = seed_phrase; self.seed_number_str = seed_number_str
        self.debug_prints_enabled = True
        if self.debug_prints_enabled: print(f"--- Initializing SWCKModel (V5) ---")
        self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block)
        self.seed_parser.debug_prints_enabled = self.debug_prints_enabled
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        self.adaptive_blocks = nn.ModuleList()
        for i in range(num_adaptive_blocks):
            block_config = self.seed_parser.get_block_config(i)
            if block_config is None: raise ValueError(f"SWCKModel Error: Could not get seed config for block {i}")
            new_block = AdaptiveBlock(d_model, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
            new_block.debug_prints_enabled = self.debug_prints_enabled
            self.adaptive_blocks.append(new_block)
            if self.debug_prints_enabled: print(f"  SWCKModel: Added AdaptiveBlock {i} (V5 with Sigmoid Gates, Decaying Heuristic)")
        self.fc_out = nn.Linear(d_model, vocab_size)
        self.overall_output_entropy_estimator = EntropyEstimator(d_model, name="OverallOutEntropy")
        self.overall_output_entropy_estimator.debug_prints_enabled = False
        self._init_weights()
        if self.debug_prints_enabled: print(f"--- SWCKModel V5 Initialized (Vocab: {vocab_size}, d_model: {d_model}, Blocks: {num_adaptive_blocks}x{num_sub_modules_per_block}sub) ---")

    def _init_weights(self): # ... (same as V4)
        initrange = 0.1; self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc_out.bias.data.zero_(); self.fc_out.weight.data.uniform_(-initrange, initrange)

    # V5: set_wiring_phase now takes epoch info
    def set_wiring_phase(self, active, current_epoch_num=0, total_wiring_epochs=1):
        if self.debug_prints_enabled:
            print(f"SWCKModel: Setting wiring phase to {active} for all blocks (Epoch {current_epoch_num+1}/{total_wiring_epochs} of wiring if active).")
        for block in self.adaptive_blocks:
            block.set_wiring_phase(active, current_epoch_num, total_wiring_epochs)

    def forward(self, src_tokens, src_key_padding_mask=None):
        if self.debug_prints_enabled:
            print(f"\n--- SWCKModel Forward Pass (Training: {self.training}) ---")
            print(f"  Input src_tokens: {src_tokens.shape}")
            if src_key_padding_mask is not None: print(f"  Input src_key_padding_mask: {src_key_padding_mask.shape} (True means pad)")
        x = self.embedding(src_tokens) * math.sqrt(self.d_model)
        x = self.pos_encoder(x)
        if self.debug_prints_enabled: print(f"  After Embedding & PosEnc, x: {x.shape}")

        block_output_entropies = []
        current_block_gate_activations = [] # V5: Changed from softmaxes
        current_block_gate_raw_params = []
        fep_predicted_delta_factors = []
        dynamic_target_entropies_used = []

        for i, block in enumerate(self.adaptive_blocks):
            if self.debug_prints_enabled: print(f"  Processing AdaptiveBlock {i}...")
            # V5 AdaptiveBlock returns sigmoid activations
            x, block_entropy, current_gate_acts, raw_gate_params, fep_delta, dyn_target_ent = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)

            block_output_entropies.append(block_entropy)
            current_block_gate_activations.append(current_gate_acts) # V5
            current_block_gate_raw_params.append(raw_gate_params)
            fep_predicted_delta_factors.append(fep_delta)
            dynamic_target_entropies_used.append(dyn_target_ent)

            if self.debug_prints_enabled:
                acts_str = [f'{act.item():.3f}' for act in current_gate_acts] # V5
                raw_str = [f'{rp.item():.3f}' for rp in raw_gate_params]
                fep_delta_str = f"{fep_delta.item():.3f}" if torch.is_tensor(fep_delta) else "N/A"
                dyn_target_str = f"{dyn_target_ent.item():.3f}" if torch.is_tensor(dyn_target_ent) else "N/A"
                print(f"  Output x from Block {i}: {x.shape}, MeasEnt: {block_entropy.item():.4f}, FEPΔFactor: {fep_delta_str}, DynTgtUsed: {dyn_target_str}, SigmoidG: {acts_str}, RawG: {raw_str}") # V5

        logits = self.fc_out(x)
        if self.debug_prints_enabled: print(f"  Output logits: {logits.shape}")
        final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None
        overall_entropy = self.overall_output_entropy_estimator(x, active_mask=final_active_mask)
        if self.debug_prints_enabled: print(f"  Overall Final Representation Entropy: {overall_entropy.item():.4f}")

        entropy_report = {
            "block_output_entropies": block_output_entropies,
            "overall_output_entropy": overall_entropy,
            "current_block_gate_activations": current_block_gate_activations, # V5
            "current_block_gate_params": current_block_gate_raw_params,
            # "initial_block_gate_targets" (softmax based) is removed from report as it's less relevant with sigmoid gates
            # The alignment loss will use the initial_raw_gate_scores_buffer directly from the block.
            "fep_predicted_delta_factors": fep_predicted_delta_factors,
            "dynamic_target_entropies_used": dynamic_target_entropies_used
        }
        if self.debug_prints_enabled: print(f"--- SWCKModel Forward Pass Complete ---")
        return logits, entropy_report