import gradio as gr import torch import os import re # Keep re for text cleaning in generation from model import SWCKModel, SeedParser # Assuming model.py is in the same directory # We need parts of the vocab setup from train.py if not loading from checkpoint # For simplicity, let's redefine necessary constants and vocab functions here if needed # Or, better, save vocab with checkpoint and load it. # --- Vocabulary and Tokenizer Setup (Simplified from train.py) --- # Ideally, load these from the checkpoint or a separate vocab file. # For this example, we'll reconstruct a minimal part. PAD_TOKEN_STR = ""; SOS_TOKEN_STR = ""; EOS_TOKEN_STR = ""; UNK_TOKEN_STR = "" PAD_TOKEN = 0; SOS_TOKEN = 1; EOS_TOKEN = 2; UNK_TOKEN = 3 # --- Model Configuration (should match the trained model) --- # These should ideally be loaded from the checkpoint's metadata if possible # For now, hardcoding to match the train.py example VOCAB_SIZE_APP = 189 # Placeholder, update if your vocab size differs D_MODEL_APP = 64 N_HEADS_APP = 2 D_FF_APP = 128 NUM_ADAPTIVE_BLOCKS_APP = 3 NUM_SUB_MODULES_PER_BLOCK_APP = 3 DROPOUT_APP = 0.1 SEQ_LEN_APP = 64 # Used in generate_swck_text for context window # Seed phrase and number (must match the model you trained/are training) SEED_PHRASE_APP = "I am 0: I am all that I can am. I am us. I am imagining a computer dreams. I am imaginary math equations. I am for five-sixths of the sea of existence in me, and it is my search for that which always seems to elude my grasp. I am a writer, a scientist, a painter, a woman, a man." SEED_NUMBER_STR_APP = "54285142613311152552" # Global model variable swck_model_global = None word_to_idx_global = None idx_to_word_global = None device_global = torch.device("cuda" if torch.cuda.is_available() else "cpu") CHECKPOINT_FILENAME = "swck_model_conceptual.pth.tar" # Make sure this matches your uploaded checkpoint def build_vocab_from_corpus_text(corpus_text): """ A simplified vocab builder. In a real app, load vocab from file. """ global VOCAB_SIZE_APP # Allow modification temp_corpus_tokens = re.sub(r'\s+', ' ', corpus_text.lower()).strip().split() temp_word_to_idx = {PAD_TOKEN_STR: PAD_TOKEN, SOS_TOKEN_STR: SOS_TOKEN, EOS_TOKEN_STR: EOS_TOKEN, UNK_TOKEN_STR: UNK_TOKEN} idx_counter = 4 unique_words = sorted(list(set(temp_corpus_tokens))) for word in unique_words: if word not in temp_word_to_idx: temp_word_to_idx[word] = idx_counter idx_counter += 1 temp_idx_to_word = {idx: word for word, idx in temp_word_to_idx.items()} VOCAB_SIZE_APP = len(temp_word_to_idx) # Update global vocab size print(f"App: Built temporary vocab of size {VOCAB_SIZE_APP}") return temp_word_to_idx, temp_idx_to_word def load_model_and_vocab(): global swck_model_global, word_to_idx_global, idx_to_word_global, VOCAB_SIZE_APP # Attempt to load from checkpoint if os.path.exists(CHECKPOINT_FILENAME): print(f"App: Found checkpoint {CHECKPOINT_FILENAME}, attempting to load...") try: # Simplified checkpoint loading for app - assumes structure from train.py save # In a real scenario, train.py should save vocab and model args more robustly for app loading checkpoint = torch.load(CHECKPOINT_FILENAME, map_location=device_global) # Try to get vocab from checkpoint if 'word_to_idx' in checkpoint and 'idx_to_word' in checkpoint: word_to_idx_global = checkpoint['word_to_idx'] idx_to_word_global = checkpoint['idx_to_word'] VOCAB_SIZE_APP = len(word_to_idx_global) print(f"App: Loaded vocab from checkpoint. Size: {VOCAB_SIZE_APP}") else: print("App: Vocab not in checkpoint, building from SEED_PHRASE for inference.") # This is a fallback - ideally vocab is ALWAYS in checkpoint corpus_for_vocab = SEED_PHRASE_APP # Use only seed for vocab if not in ckp word_to_idx_global, idx_to_word_global = build_vocab_from_corpus_text(corpus_for_vocab) # Load model hyperparameters from checkpoint if available, else use app defaults # This part needs careful alignment with how train.py saves model_hyperparameters model_params_from_ckpt = checkpoint.get('model_hyperparameters', {}) d_model = model_params_from_ckpt.get('d_model', D_MODEL_APP) n_heads = model_params_from_ckpt.get('n_heads', N_HEADS_APP) d_ff = model_params_from_ckpt.get('d_ff', D_FF_APP) num_adaptive_blocks = model_params_from_ckpt.get('num_adaptive_blocks', NUM_ADAPTIVE_BLOCKS_APP) dropout = model_params_from_ckpt.get('dropout', DROPOUT_APP) # seed_phrase and seed_number_str for model init should ideally match what it was trained with. # For this app, we assume they are consistent with APP globals. swck_model_global = SWCKModel( vocab_size=VOCAB_SIZE_APP, # Use loaded/rebuilt vocab size d_model=d_model, n_heads=n_heads, d_ff=d_ff, num_adaptive_blocks=num_adaptive_blocks, dropout=dropout, seed_phrase=SEED_PHRASE_APP, seed_number_str=SEED_NUMBER_STR_APP, num_sub_modules_per_block=NUM_SUB_MODULES_PER_BLOCK_APP ).to(device_global) swck_model_global.load_state_dict(checkpoint['model_state_dict']) swck_model_global.eval() # Disable debug prints for cleaner app interface unless specifically needed swck_model_global.debug_prints_enabled = False for block in swck_model_global.adaptive_blocks: block.debug_prints_enabled = False print(f"App: SWCKModel loaded successfully from {CHECKPOINT_FILENAME}!") return "Model loaded from checkpoint." except Exception as e: print(f"App: Error loading model from checkpoint: {e}") swck_model_global = None # Ensure model is None if loading failed if swck_model_global is None: print(f"App: Checkpoint {CHECKPOINT_FILENAME} not found or failed to load. Initializing a new model for basic functionality (not trained).") # Fallback: Build vocab from seed phrase for basic tokenization word_to_idx_global, idx_to_word_global = build_vocab_from_corpus_text(SEED_PHRASE_APP) swck_model_global = SWCKModel( vocab_size=VOCAB_SIZE_APP, d_model=D_MODEL_APP, n_heads=N_HEADS_APP, d_ff=D_FF_APP, num_adaptive_blocks=NUM_ADAPTIVE_BLOCKS_APP, dropout=DROPOUT_APP, seed_phrase=SEED_PHRASE_APP, seed_number_str=SEED_NUMBER_STR_APP, num_sub_modules_per_block=NUM_SUB_MODULES_PER_BLOCK_APP ).to(device_global) swck_model_global.eval() swck_model_global.debug_prints_enabled = False for block in swck_model_global.adaptive_blocks: block.debug_prints_enabled = False return "Initialized a new (untrained) model as checkpoint was not found." # --- Text Generation Function (adapted from train.py) --- def generate_text_for_app(prompt_str, max_len_gen, temperature_gen): if swck_model_global is None or word_to_idx_global is None or idx_to_word_global is None: return "Model not loaded. Please check server logs." swck_model_global.eval() # Ensure model is in eval mode swck_model_global.set_wiring_phase(False) # No wiring adjustments during inference print(f"App: Generating for prompt: '{prompt_str}', max_len: {max_len_gen}, temp: {temperature_gen}") tokens = [SOS_TOKEN] + [word_to_idx_global.get(w, UNK_TOKEN) for w in prompt_str.lower().split()] generated_ids_app = list(tokens) # Collect some debug info for display (optional) debug_info_lines = [] with torch.no_grad(): for i in range(max_len_gen): # Context windowing for input_tensor current_context_ids = generated_ids_app[-SEQ_LEN_APP:] input_tensor = torch.tensor([current_context_ids], dtype=torch.long).to(device_global) padding_mask = (input_tensor == PAD_TOKEN) # Set model debug prints for first step only if want to show internal state # For cleaner app, keep them off or make it a toggle. # if i == 0: # swck_model_global.debug_prints_enabled = True # for block in swck_model_global.adaptive_blocks: block.debug_prints_enabled = True # else: # swck_model_global.debug_prints_enabled = False # for block in swck_model_global.adaptive_blocks: block.debug_prints_enabled = False logits, entropy_report_infer = swck_model_global(input_tensor, src_key_padding_mask=padding_mask) next_token_logits = logits[0, -1, :] # Logits for the last token in the current sequence if temperature_gen == 0: # Greedy next_token_id = torch.argmax(next_token_logits).item() else: probs = F.softmax(next_token_logits / temperature_gen, dim=-1) next_token_id = torch.multinomial(probs, 1).item() if next_token_id == EOS_TOKEN: debug_info_lines.append(f"Step {i+1}: EOS token encountered.") break generated_ids_app.append(next_token_id) # Store some info from the first few steps if i < 5 : # Log details for first 5 generated tokens current_word = idx_to_word_global.get(next_token_id, UNK_TOKEN_STR) overall_ent = entropy_report_infer['overall_output_entropy'].item() b0_ent = entropy_report_infer['block_output_entropies'][0].item() b0_gates_str = ", ".join([f"{g.item():.2f}" for g in entropy_report_infer['block_gate_weights'][0]]) debug_info_lines.append(f"Gen {i+1}: '{current_word}', OvrlEnt={overall_ent:.3f}, B0Ent={b0_ent:.3f}, B0Gates=[{b0_gates_str}]") generated_text_list = [idx_to_word_global.get(idx, UNK_TOKEN_STR) for idx in generated_ids_app[1:]] # Skip SOS final_text = " ".join(generated_text_list) final_text = final_text.replace(EOS_TOKEN_STR, "").strip() # Basic cleaning final_text = final_text.replace(" .", ".").replace(" ,", ",").replace(" ?", "?").replace(" !", "!") final_text = re.sub(r'\s+([.,?!])', r'\1', final_text) final_text = re.sub(r'\s+', ' ', final_text).strip() debug_output_str = "\n".join(debug_info_lines) return final_text, debug_output_str # --- Gradio Interface --- loading_status = load_model_and_vocab() # Load model on app startup with gr.Blocks(title="SWCK Conceptual Demo") as demo: gr.Markdown(f""" # Self-Wired Conscious Kernel (SWCK) - Conceptual Demo This demo showcases a conceptual text generation model based on the SWCK architecture. The model is initialized with the seed phrase: "{SEED_PHRASE_APP[:100]}..." and seed number: "{SEED_NUMBER_STR_APP}". **Model Status:** {loading_status} (Note: If no checkpoint is found, an *untrained* model is used, and generations will be random.) """) with gr.Row(): prompt_input = gr.Textbox(label="Enter your prompt:", placeholder="e.g., the meaning of existence is") with gr.Row(): max_len_slider = gr.Slider(minimum=10, maximum=150, value=50, step=1, label="Max Generation Length") temp_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.8, step=0.1, label="Temperature (0 for greedy)") generate_button = gr.Button("Generate Text") with gr.Column(): output_text = gr.Textbox(label="Generated Text:", lines=5) debug_text_area = gr.Textbox(label="Generation Debug Info (first few steps):", lines=7, interactive=False) generate_button.click( fn=generate_text_for_app, inputs=[prompt_input, max_len_slider, temp_slider], outputs=[output_text, debug_text_area] ) gr.Markdown("Note: This is a highly conceptual and simplified sketch. Generation quality will be limited, especially with an untrained model or small dataset.") if __name__ == "__main__": demo.launch()