Spaces:
Sleeping
Sleeping
File size: 21,045 Bytes
1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 8902f5e 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 8902f5e 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 cfc0aba 1032a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
#TODO: Quran results have numbers
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
import gradio as gr
import torah
import bible
import quran
import hindu
import tripitaka
from utils import number_to_ordinal_word, custom_normalize, date_to_words, translate_date_to_words
from gematria import calculate_gematria, strip_diacritics
import pandas as pd
from deep_translator import GoogleTranslator
from gradio_calendar import Calendar
from datetime import datetime, timedelta
import math
import json
import re
import sqlite3
from collections import defaultdict
from typing import List, Tuple
import rich
from fuzzywuzzy import fuzz
import calendar
import translation_utils
import hashlib
import time
translation_utils.create_translation_table()
# Create a translator instance *once* globally
translator = GoogleTranslator(source='auto', target='auto')
LANGUAGES_SUPPORTED = translator.get_supported_languages(as_dict=True) # Corrected dictionary name
LANGUAGE_CODE_MAP = LANGUAGES_SUPPORTED # Use deep_translator's mapping directly
# --- Constants ---
DATABASE_FILE = 'gematria.db'
MAX_PHRASE_LENGTH_LIMIT = 20
ELS_CACHE_DB = "els_cache.db"
DATABASE_TIMEOUT = 60
# --- Database Initialization ---
def initialize_database():
global conn
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS results (
gematria_sum INTEGER,
words TEXT,
translation TEXT,
book TEXT,
chapter INTEGER,
verse INTEGER,
phrase_length INTEGER,
word_position TEXT,
PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position)
)
''')
cursor.execute('''
CREATE INDEX IF NOT EXISTS idx_results_gematria
ON results (gematria_sum)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS processed_books (
book TEXT PRIMARY KEY,
max_phrase_length INTEGER
)
''')
conn.commit()
# --- Initialize Database ---
initialize_database()
# --- ELS Cache Functions ---
def create_els_cache_table():
with sqlite3.connect(ELS_CACHE_DB) as conn:
conn.execute('''
CREATE TABLE IF NOT EXISTS els_cache (
query_hash TEXT PRIMARY KEY,
results TEXT
)
''')
def get_query_hash(func, *args, **kwargs):
key = (func.__name__, args, tuple(sorted(kwargs.items())))
return hashlib.sha256(json.dumps(key).encode()).hexdigest()
def cached_process_json_files(func, *args, **kwargs):
query_hash = get_query_hash(func, *args, **kwargs)
try:
with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn:
cursor = conn.cursor()
cursor.execute("SELECT results FROM els_cache WHERE query_hash = ?", (query_hash,))
result = cursor.fetchone()
if result:
logger.info(f"Cache hit for query: {query_hash}")
return json.loads(result[0])
except sqlite3.Error as e:
logger.error(f"Database error checking cache: {e}")
logger.info(f"Cache miss for query: {query_hash}")
results = func(*args, **kwargs)
try:
with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO els_cache (query_hash, results) VALUES (?, ?)", (query_hash, json.dumps(results)))
conn.commit()
except sqlite3.Error as e:
logger.error(f"Database error caching results: {e}")
return results
# --- Helper Functions (from Network app.py) ---
def flatten_text(text: List) -> str:
if isinstance(text, list):
return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text)
return text
def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]:
global conn
with sqlite3.connect(DATABASE_FILE) as conn:
cursor = conn.cursor()
cursor.execute('''
SELECT words, book, chapter, verse, phrase_length, word_position
FROM results
WHERE gematria_sum = ? AND phrase_length <= ?
''', (gematria_sum, max_words))
results = cursor.fetchall()
return results
def get_most_frequent_phrase(results):
phrase_counts = defaultdict(int)
for words, book, chapter, verse, phrase_length, word_position in results:
phrase_counts[words] += 1
most_frequent_phrase = max(phrase_counts, key=phrase_counts.get) if phrase_counts else None # Handle empty results
return most_frequent_phrase
# --- Functions from BOS app.py ---
def create_language_dropdown(label, default_value='English', show_label=True): # Default value must be in LANGUAGE_CODE_MAP
return gr.Dropdown(
choices=list(LANGUAGE_CODE_MAP.keys()), # Correct choices
label=label,
value=default_value,
show_label=show_label
)
def calculate_gematria_sum(text, date_words):
if text or date_words:
combined_input = f"{text} {date_words}"
logger.info(f"searching for input: {combined_input}")
numbers = re.findall(r'\d+', combined_input)
text_without_numbers = re.sub(r'\d+', '', combined_input)
number_sum = sum(int(number) for number in numbers)
text_gematria = calculate_gematria(strip_diacritics(text_without_numbers))
total_sum = text_gematria + number_sum
return total_sum
else:
return None
def add_24h_projection(results_dict, date_str): # Add date_str as parameter
combined_results = []
for book_name, results in results_dict.items():
combined_results.extend(results)
num_results = len(combined_results)
if num_results > 0:
time_interval = timedelta(minutes=24 * 60 / num_results)
current_datetime = datetime.combine(datetime.today(), datetime.min.time())
for i in range(num_results):
next_datetime = current_datetime + time_interval
time_range_str = f"{current_datetime.strftime('%H:%M')}-{next_datetime.strftime('%H:%M')}"
combined_results[i]['24h Projection'] = time_range_str
current_datetime = next_datetime
# Re-organize results back into their book dictionaries
reorganized_results = defaultdict(list)
for result in combined_results:
book_name = result.get('book', 'Unknown') #Get book name to reorganize
reorganized_results[book_name].append(result)
return reorganized_results
def sort_results(results):
def parse_time(time_str):
try:
hours, minutes = map(int, time_str.split(':'))
return hours * 60 + minutes # Convert to total minutes
except ValueError:
return 24 * 60 # Sort invalid times to the end
return sorted(results, key=lambda x: (
parse_time(x.get('24h Projection', '23:59').split('-')[0]), # Sort by start time first
parse_time(x.get('24h Projection', '23:59').split('-')[1]) # Then by end time
))
# --- Main Gradio App ---
with gr.Blocks() as app:
with gr.Column():
with gr.Row():
tlang = create_language_dropdown("Target Language for Result Translation", default_value='english')
start_date_range = Calendar(type="datetime", label="Start Date for ELS")
end_date_range = Calendar(type="datetime", label="End Date for ELS")
use_day = gr.Checkbox(label="Use Day", info="Check to include day in search", value=True)
use_month = gr.Checkbox(label="Use Month", info="Check to include month in search", value=True)
use_year = gr.Checkbox(label="Use Year", info="Check to include year in search", value=True)
date_language_input = create_language_dropdown("Language of the person/topic (optional) (Date Word Language)", default_value='english')
with gr.Row():
gematria_text = gr.Textbox(label="Name and/or Topic (required)", value="Hans Albert Einstein Mileva Marity-Einstein")
with gr.Row():
with gr.Column():
round_x = gr.Number(label="Round (1)", value=1)
round_y = gr.Number(label="Round (2)", value=-1)
rounds_combination = gr.Textbox(label="Combined Rounds", value="1,-1")
with gr.Row():
include_torah_chk = gr.Checkbox(label="Include Torah", value=True)
include_bible_chk = gr.Checkbox(label="Include Bible", value=True)
include_quran_chk = gr.Checkbox(label="Include Quran", value=True)
include_hindu_chk = gr.Checkbox(label="Include Rigveda", value=True)
include_tripitaka_chk = gr.Checkbox(label="Include Tripitaka", value=True)
merge_results_chk = gr.Checkbox(label="Merge Results (Torah-Bible-Quran)", value=True)
strip_spaces = gr.Checkbox(label="Strip Spaces from Books", value=True)
strip_in_braces = gr.Checkbox(label="Strip Text in Braces from Books", value=True)
strip_diacritics_chk = gr.Checkbox(label="Strip Diacritics from Books", value=True)
translate_btn = gr.Button("Search with ELS")
# --- Output Components ---
markdown_output = gr.Dataframe(label="ELS Results")
most_frequent_phrase_output = gr.Textbox(label="Most Frequent Phrase in Network Search")
json_output = gr.JSON(label="JSON Output")
# --- Event Handlers ---
def update_rounds_combination(round_x, round_y):
return f"{int(round_x)},{int(round_y)}"
def find_closest_phrase(target_phrase, phrases):
best_match = None
best_score = 0
logging.debug(f"Target phrase for similarity search: {target_phrase}") # Log target phrase
for phrase, _, _, _, _, _ in phrases:
word_length_diff = abs(len(target_phrase.split()) - len(phrase.split()))
similarity_score = fuzz.ratio(target_phrase, phrase)
combined_score = similarity_score - word_length_diff
logging.debug(f"Comparing with phrase: {phrase}") # Log each phrase being compared
logging.debug(
f"Word Length Difference: {word_length_diff}, Similarity Score: {similarity_score}, Combined Score: {combined_score}") # Log scores
if combined_score > best_score:
best_score = combined_score
best_match = phrase
logging.debug(f"Closest phrase found: {best_match} with score: {best_score}") # Log the best match
return best_match
def perform_search(rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka, gematria_text, start_date, end_date, date_language_input):
overall_start_time = time.time()
combined_and_sorted_results = []
most_frequent_phrases = {}
current_date = start_date
while current_date <= end_date:
date_str = current_date.strftime("%Y-%m-%d")
date_words = translate_date_to_words(current_date, date_language_input)
step = calculate_gematria_sum(gematria_text, date_words)
logger.debug(f"Calculated step for {date_str}: {step}")
if step != 0 and rounds_combination != "0,0":
# Process for the current date
els_results_single_date = {}
if include_torah:
els_results_single_date["Torah"] = cached_process_json_files(torah.process_json_files, 1, 39, step,
rounds_combination, 0, tlang, strip_spaces,
strip_in_braces, strip_diacritics_chk)
if include_bible:
els_results_single_date["Bible"] = cached_process_json_files(bible.process_json_files, 40, 66, step,
rounds_combination, 0, tlang, strip_spaces,
strip_in_braces, strip_diacritics_chk)
if include_quran:
els_results_single_date["Quran"] = cached_process_json_files(quran.process_json_files, 1, 114, step,
rounds_combination, 0, tlang, strip_spaces,
strip_in_braces, strip_diacritics_chk)
if include_hindu:
els_results_single_date["Rig Veda"] = cached_process_json_files(hindu.process_json_files, 1, 10, step,
rounds_combination, 0, tlang, False,
strip_in_braces, strip_diacritics_chk)
if include_tripitaka:
els_results_single_date["Tripitaka"] = cached_process_json_files(tripitaka.process_json_files, 1, 52,
step, rounds_combination, 0, tlang,
strip_spaces, strip_in_braces,
strip_diacritics_chk)
# Add 24h projection *before* iterating through books
els_results_single_date = add_24h_projection(els_results_single_date, date_str)
for book_name, book_results in els_results_single_date.items():
logger.debug(f"Processing results for book: {book_name}")
if book_results:
most_frequent_phrases[book_name] = ""
for result in book_results:
try:
gematria_sum = calculate_gematria(result['result_text'])
max_words = len(result['result_text'].split())
matching_phrases = search_gematria_in_db(gematria_sum, max_words)
max_words_limit = 20
while not matching_phrases and max_words < max_words_limit:
max_words += 1
matching_phrases = search_gematria_in_db(gematria_sum, max_words)
if matching_phrases:
most_frequent_phrase = get_most_frequent_phrase(matching_phrases)
most_frequent_phrases[book_name] = most_frequent_phrase
else:
closest_phrase = find_closest_phrase(result['result_text'],
search_gematria_in_db(gematria_sum,
max_words_limit))
most_frequent_phrases[book_name] = closest_phrase or ""
result['Most Frequent Phrase'] = most_frequent_phrases[book_name]
result['date'] = date_str
if 'book' in result:
if isinstance(result['book'], int):
result['book'] = f"{book_name} {result['book']}."
except KeyError as e:
print(f"DEBUG: KeyError - Key '{e.args[0]}' not found in result. Skipping this result.")
continue
combined_and_sorted_results.extend(book_results)
current_date += timedelta(days=1)
# --- Batch Translation ---
translation_start_time = time.time()
selected_language_long = tlang
tlang_short = LANGUAGES_SUPPORTED.get(selected_language_long)
if tlang_short is None:
tlang_short = "en"
logger.warning(
f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).")
phrases_to_translate = []
phrases_source_langs = []
results_to_translate = []
results_source_langs = []
for result in combined_and_sorted_results:
phrases_to_translate.append(result.get('Most Frequent Phrase', ''))
phrases_source_langs.append(result.get("source_language", "auto"))
results_to_translate.append(result.get('result_text', ''))
results_source_langs.append(result.get("source_language", "auto"))
translated_phrases = translation_utils.batch_translate(phrases_to_translate, tlang_short, phrases_source_langs)
translated_result_texts = translation_utils.batch_translate(results_to_translate, tlang_short, results_source_langs)
for i, result in enumerate(combined_and_sorted_results):
result['translated_text'] = translated_result_texts.get(results_to_translate[i], result.get('result_text', ''))
result['Translated Most Frequent Phrase'] = translated_phrases.get(phrases_to_translate[i],
result.get('Most Frequent Phrase', ''))
translation_end_time = time.time()
logger.debug(f"Batch translation took: {translation_end_time - translation_start_time} seconds")
# --- Time projections ---
time_projections_start_time = time.time()
for result in combined_and_sorted_results:
selected_date = datetime.strptime(result['date'], '%Y-%m-%d')
book_name = result.get('book', 'Unknown')
projection_input = {book_name: [result]}
updated_date_results = add_24h_projection(projection_input, result['date'])
result.update(updated_date_results[book_name][0])
combined_and_sorted_results = sort_results(combined_and_sorted_results)
time_projections_end_time = time.time()
logger.debug(
f"Time projections took: {time_projections_end_time - time_projections_start_time} seconds")
# --- Dataframe and JSON creation ---
dataframe_json_start_time = time.time()
df = pd.DataFrame(combined_and_sorted_results)
df.index = range(1, len(df) + 1)
df.reset_index(inplace=True)
df.rename(columns={'index': 'Result Number'}, inplace=True)
search_config = {
"rounds_combination": rounds_combination, # No more 'step'
"target_language": tlang,
"strip_spaces": strip_spaces,
"strip_in_braces": strip_in_braces,
"strip_diacritics": strip_diacritics_chk,
"include_torah": include_torah,
"include_bible": include_bible,
"include_quran": include_quran,
"include_hindu": include_hindu,
"include_tripitaka": include_tripitaka,
"gematria_text": gematria_text,
"start_date": start_date.strftime("%Y-%m-%d"),
"end_date": end_date.strftime("%Y-%m-%d")
}
output_data = {
"search_configuration": search_config,
"results": combined_and_sorted_results
}
json_data = output_data
combined_most_frequent = "\n".join(
f"{book}: {phrase}" for book, phrase in most_frequent_phrases.items() if phrase)
dataframe_json_end_time = time.time()
logger.debug(
f"Dataframe and JSON creation took: {dataframe_json_end_time - dataframe_json_start_time} seconds")
overall_end_time = time.time()
logger.debug(f"Overall process took: {overall_end_time - overall_start_time} seconds")
return df, combined_most_frequent, json_data
# --- Event Triggers ---
round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
def update_rounds_combination(round_x, round_y):
return f"{int(round_x)},{int(round_y)}"
round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
translate_btn.click(
perform_search,
inputs=[rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah_chk, include_bible_chk, include_quran_chk, include_hindu_chk, include_tripitaka_chk, gematria_text, start_date_range, end_date_range, date_language_input],
outputs=[markdown_output, most_frequent_phrase_output, json_output]
)
if __name__ == "__main__":
app.launch(share=False)
|