File size: 21,045 Bytes
1032a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc0aba
1032a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc0aba
 
 
 
1032a12
cfc0aba
 
 
 
 
 
 
 
 
1032a12
cfc0aba
 
 
 
 
1032a12
cfc0aba
1032a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc0aba
 
1032a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8902f5e
1032a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc0aba
 
 
 
1032a12
cfc0aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032a12
 
cfc0aba
1032a12
 
 
 
cfc0aba
 
1032a12
 
cfc0aba
1032a12
cfc0aba
 
1032a12
 
 
 
 
 
 
 
 
 
cfc0aba
 
 
1032a12
cfc0aba
 
1032a12
cfc0aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032a12
 
 
 
 
 
 
cfc0aba
1032a12
 
 
 
 
 
 
 
 
 
cfc0aba
 
1032a12
 
 
 
cfc0aba
1032a12
 
8902f5e
1032a12
cfc0aba
1032a12
cfc0aba
 
 
1032a12
cfc0aba
 
 
 
1032a12
 
 
 
 
 
cfc0aba
 
 
 
 
 
1032a12
 
 
 
cfc0aba
1032a12
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#TODO: Quran results have numbers

import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

import gradio as gr
import torah
import bible
import quran
import hindu
import tripitaka
from utils import number_to_ordinal_word, custom_normalize, date_to_words, translate_date_to_words
from gematria import calculate_gematria, strip_diacritics

import pandas as pd
from deep_translator import GoogleTranslator
from gradio_calendar import Calendar
from datetime import datetime, timedelta
import math
import json
import re
import sqlite3
from collections import defaultdict
from typing import List, Tuple
import rich
from fuzzywuzzy import fuzz
import calendar
import translation_utils
import hashlib
import time

translation_utils.create_translation_table()

# Create a translator instance *once* globally
translator = GoogleTranslator(source='auto', target='auto')
LANGUAGES_SUPPORTED = translator.get_supported_languages(as_dict=True)  # Corrected dictionary name

LANGUAGE_CODE_MAP = LANGUAGES_SUPPORTED # Use deep_translator's mapping directly

# --- Constants ---
DATABASE_FILE = 'gematria.db'
MAX_PHRASE_LENGTH_LIMIT = 20

ELS_CACHE_DB = "els_cache.db"
DATABASE_TIMEOUT = 60

# --- Database Initialization ---
def initialize_database():
    global conn
    conn = sqlite3.connect(DATABASE_FILE)
    cursor = conn.cursor()
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS results (
        gematria_sum INTEGER,
        words TEXT,
        translation TEXT,
        book TEXT,
        chapter INTEGER,
        verse INTEGER,
        phrase_length INTEGER,
        word_position TEXT, 
        PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position)
    )
    ''')
    cursor.execute('''
    CREATE INDEX IF NOT EXISTS idx_results_gematria
    ON results (gematria_sum)
    ''')
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS processed_books (
        book TEXT PRIMARY KEY,
        max_phrase_length INTEGER
    )
    ''')
    conn.commit()

# --- Initialize Database ---
initialize_database()

# --- ELS Cache Functions ---
def create_els_cache_table():
    with sqlite3.connect(ELS_CACHE_DB) as conn:
        conn.execute('''
            CREATE TABLE IF NOT EXISTS els_cache (
                query_hash TEXT PRIMARY KEY,
                results TEXT
            )
        ''')

def get_query_hash(func, *args, **kwargs):
    key = (func.__name__, args, tuple(sorted(kwargs.items())))
    return hashlib.sha256(json.dumps(key).encode()).hexdigest()


def cached_process_json_files(func, *args, **kwargs):
    query_hash = get_query_hash(func, *args, **kwargs)

    try:
        with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn:
            cursor = conn.cursor()
            cursor.execute("SELECT results FROM els_cache WHERE query_hash = ?", (query_hash,))
            result = cursor.fetchone()
            if result:
                logger.info(f"Cache hit for query: {query_hash}")
                return json.loads(result[0])
    except sqlite3.Error as e:
        logger.error(f"Database error checking cache: {e}")

    logger.info(f"Cache miss for query: {query_hash}")
    results = func(*args, **kwargs)

    try:
        with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn:
            cursor = conn.cursor()
            cursor.execute("INSERT INTO els_cache (query_hash, results) VALUES (?, ?)", (query_hash, json.dumps(results)))
            conn.commit()
    except sqlite3.Error as e:
        logger.error(f"Database error caching results: {e}")

    return results

# --- Helper Functions (from Network app.py) ---
def flatten_text(text: List) -> str:
    if isinstance(text, list):
        return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text)
    return text

def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]:
    global conn
    with sqlite3.connect(DATABASE_FILE) as conn:
        cursor = conn.cursor()
        cursor.execute('''
        SELECT words, book, chapter, verse, phrase_length, word_position 
        FROM results 
        WHERE gematria_sum = ? AND phrase_length <= ?
        ''', (gematria_sum, max_words))
        results = cursor.fetchall()
    return results

def get_most_frequent_phrase(results):
    phrase_counts = defaultdict(int)
    for words, book, chapter, verse, phrase_length, word_position in results:
        phrase_counts[words] += 1
    most_frequent_phrase = max(phrase_counts, key=phrase_counts.get) if phrase_counts else None  # Handle empty results
    return most_frequent_phrase

# --- Functions from BOS app.py ---
def create_language_dropdown(label, default_value='English', show_label=True): # Default value must be in LANGUAGE_CODE_MAP
    return gr.Dropdown(
        choices=list(LANGUAGE_CODE_MAP.keys()),  # Correct choices
        label=label,
        value=default_value,
        show_label=show_label
    )

def calculate_gematria_sum(text, date_words):
    if text or date_words:
        combined_input = f"{text} {date_words}"
        logger.info(f"searching for input: {combined_input}")
        numbers = re.findall(r'\d+', combined_input)
        text_without_numbers = re.sub(r'\d+', '', combined_input)
        number_sum = sum(int(number) for number in numbers)
        text_gematria = calculate_gematria(strip_diacritics(text_without_numbers))
        total_sum = text_gematria + number_sum
        return total_sum
    else:
        return None


def add_24h_projection(results_dict, date_str):  # Add date_str as parameter
    combined_results = []
    for book_name, results in results_dict.items():
        combined_results.extend(results)

    num_results = len(combined_results)
    if num_results > 0:
        time_interval = timedelta(minutes=24 * 60 / num_results)
        current_datetime = datetime.combine(datetime.today(), datetime.min.time())
        for i in range(num_results):
            next_datetime = current_datetime + time_interval
            time_range_str = f"{current_datetime.strftime('%H:%M')}-{next_datetime.strftime('%H:%M')}"
            combined_results[i]['24h Projection'] = time_range_str
            current_datetime = next_datetime

    # Re-organize results back into their book dictionaries
    reorganized_results = defaultdict(list)
    for result in combined_results:
        book_name = result.get('book', 'Unknown') #Get book name to reorganize
        reorganized_results[book_name].append(result)

    return reorganized_results


def sort_results(results):
    def parse_time(time_str):
        try:
            hours, minutes = map(int, time_str.split(':'))
            return hours * 60 + minutes  # Convert to total minutes
        except ValueError:
            return 24 * 60  # Sort invalid times to the end

    return sorted(results, key=lambda x: (
        parse_time(x.get('24h Projection', '23:59').split('-')[0]),  # Sort by start time first
        parse_time(x.get('24h Projection', '23:59').split('-')[1])   # Then by end time
    ))

# --- Main Gradio App ---
with gr.Blocks() as app:
    with gr.Column():
        with gr.Row():
            tlang = create_language_dropdown("Target Language for Result Translation", default_value='english')
            start_date_range = Calendar(type="datetime", label="Start Date for ELS")
            end_date_range = Calendar(type="datetime", label="End Date for ELS")
            use_day = gr.Checkbox(label="Use Day", info="Check to include day in search", value=True)
            use_month = gr.Checkbox(label="Use Month", info="Check to include month in search", value=True)
            use_year = gr.Checkbox(label="Use Year", info="Check to include year in search", value=True)
            date_language_input = create_language_dropdown("Language of the person/topic (optional) (Date Word Language)", default_value='english')
        with gr.Row():
            gematria_text = gr.Textbox(label="Name and/or Topic (required)", value="Hans Albert Einstein Mileva Marity-Einstein")


        with gr.Row():
            with gr.Column():
                round_x = gr.Number(label="Round (1)", value=1)
                round_y = gr.Number(label="Round (2)", value=-1)
            
            rounds_combination = gr.Textbox(label="Combined Rounds", value="1,-1")

        with gr.Row():
            include_torah_chk = gr.Checkbox(label="Include Torah", value=True)
            include_bible_chk = gr.Checkbox(label="Include Bible", value=True)
            include_quran_chk = gr.Checkbox(label="Include Quran", value=True)
            include_hindu_chk = gr.Checkbox(label="Include Rigveda", value=True)
            include_tripitaka_chk = gr.Checkbox(label="Include Tripitaka", value=True)
            merge_results_chk = gr.Checkbox(label="Merge Results (Torah-Bible-Quran)", value=True)
        
            strip_spaces = gr.Checkbox(label="Strip Spaces from Books", value=True)
            strip_in_braces = gr.Checkbox(label="Strip Text in Braces from Books", value=True)
            strip_diacritics_chk = gr.Checkbox(label="Strip Diacritics from Books", value=True)

        translate_btn = gr.Button("Search with ELS")

        # --- Output Components ---
        markdown_output = gr.Dataframe(label="ELS Results")
        most_frequent_phrase_output = gr.Textbox(label="Most Frequent Phrase in Network Search")
        json_output = gr.JSON(label="JSON Output")

    # --- Event Handlers ---

    def update_rounds_combination(round_x, round_y):
        return f"{int(round_x)},{int(round_y)}"



    def find_closest_phrase(target_phrase, phrases):
        best_match = None
        best_score = 0

        logging.debug(f"Target phrase for similarity search: {target_phrase}")  # Log target phrase

        for phrase, _, _, _, _, _ in phrases:
            word_length_diff = abs(len(target_phrase.split()) - len(phrase.split()))
            similarity_score = fuzz.ratio(target_phrase, phrase)
            combined_score = similarity_score - word_length_diff

            logging.debug(f"Comparing with phrase: {phrase}")  # Log each phrase being compared
            logging.debug(
                f"Word Length Difference: {word_length_diff}, Similarity Score: {similarity_score}, Combined Score: {combined_score}")  # Log scores

            if combined_score > best_score:
                best_score = combined_score
                best_match = phrase

        logging.debug(f"Closest phrase found: {best_match} with score: {best_score}")  # Log the best match
        return best_match


    def perform_search(rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka, gematria_text, start_date, end_date, date_language_input):
        overall_start_time = time.time()

        combined_and_sorted_results = []
        most_frequent_phrases = {}

        current_date = start_date
        while current_date <= end_date:
            date_str = current_date.strftime("%Y-%m-%d")
            date_words = translate_date_to_words(current_date, date_language_input)

            step = calculate_gematria_sum(gematria_text, date_words)
            logger.debug(f"Calculated step for {date_str}: {step}")

            if step != 0 and rounds_combination != "0,0":
                # Process for the current date
                els_results_single_date = {}
                if include_torah:
                    els_results_single_date["Torah"] = cached_process_json_files(torah.process_json_files, 1, 39, step,
                                                                            rounds_combination, 0, tlang, strip_spaces,
                                                                            strip_in_braces, strip_diacritics_chk)
                if include_bible:
                    els_results_single_date["Bible"] = cached_process_json_files(bible.process_json_files, 40, 66, step,
                                                                            rounds_combination, 0, tlang, strip_spaces,
                                                                            strip_in_braces, strip_diacritics_chk)
                if include_quran:
                    els_results_single_date["Quran"] = cached_process_json_files(quran.process_json_files, 1, 114, step,
                                                                            rounds_combination, 0, tlang, strip_spaces,
                                                                            strip_in_braces, strip_diacritics_chk)
                if include_hindu:
                    els_results_single_date["Rig Veda"] = cached_process_json_files(hindu.process_json_files, 1, 10, step,
                                                                                rounds_combination, 0, tlang, False,
                                                                                strip_in_braces, strip_diacritics_chk)
                if include_tripitaka:
                    els_results_single_date["Tripitaka"] = cached_process_json_files(tripitaka.process_json_files, 1, 52,
                                                                                    step, rounds_combination, 0, tlang,
                                                                                    strip_spaces, strip_in_braces,
                                                                                    strip_diacritics_chk)

                # Add 24h projection *before* iterating through books
                els_results_single_date = add_24h_projection(els_results_single_date, date_str)

                for book_name, book_results in els_results_single_date.items():
                    logger.debug(f"Processing results for book: {book_name}")
                    if book_results:
                        most_frequent_phrases[book_name] = ""
                        for result in book_results:
                            try:
                                gematria_sum = calculate_gematria(result['result_text'])
                                max_words = len(result['result_text'].split())
                                matching_phrases = search_gematria_in_db(gematria_sum, max_words)
                                max_words_limit = 20
                                while not matching_phrases and max_words < max_words_limit:
                                    max_words += 1
                                    matching_phrases = search_gematria_in_db(gematria_sum, max_words)

                                if matching_phrases:
                                    most_frequent_phrase = get_most_frequent_phrase(matching_phrases)
                                    most_frequent_phrases[book_name] = most_frequent_phrase
                                else:
                                    closest_phrase = find_closest_phrase(result['result_text'],
                                                                        search_gematria_in_db(gematria_sum,
                                                                                            max_words_limit))
                                    most_frequent_phrases[book_name] = closest_phrase or ""

                                result['Most Frequent Phrase'] = most_frequent_phrases[book_name]
                                result['date'] = date_str
                                if 'book' in result:
                                    if isinstance(result['book'], int):
                                        result['book'] = f"{book_name} {result['book']}."

                            except KeyError as e:
                                print(f"DEBUG: KeyError - Key '{e.args[0]}' not found in result. Skipping this result.")
                                continue


                    combined_and_sorted_results.extend(book_results)



            current_date += timedelta(days=1)

        # --- Batch Translation ---
        translation_start_time = time.time()
        selected_language_long = tlang
        tlang_short = LANGUAGES_SUPPORTED.get(selected_language_long)
        if tlang_short is None:
            tlang_short = "en"
            logger.warning(
                f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).")

        phrases_to_translate = []
        phrases_source_langs = []
        results_to_translate = []
        results_source_langs = []

        for result in combined_and_sorted_results:
            phrases_to_translate.append(result.get('Most Frequent Phrase', ''))
            phrases_source_langs.append(result.get("source_language", "auto"))
            results_to_translate.append(result.get('result_text', ''))
            results_source_langs.append(result.get("source_language", "auto"))

        translated_phrases = translation_utils.batch_translate(phrases_to_translate, tlang_short, phrases_source_langs)
        translated_result_texts = translation_utils.batch_translate(results_to_translate, tlang_short, results_source_langs)

        for i, result in enumerate(combined_and_sorted_results):
            result['translated_text'] = translated_result_texts.get(results_to_translate[i], result.get('result_text', ''))
            result['Translated Most Frequent Phrase'] = translated_phrases.get(phrases_to_translate[i],
                                                                            result.get('Most Frequent Phrase', ''))

        translation_end_time = time.time()
        logger.debug(f"Batch translation took: {translation_end_time - translation_start_time} seconds")

        # --- Time projections ---
        time_projections_start_time = time.time()
        for result in combined_and_sorted_results:
            selected_date = datetime.strptime(result['date'], '%Y-%m-%d')
            book_name = result.get('book', 'Unknown')
            projection_input = {book_name: [result]}

            updated_date_results = add_24h_projection(projection_input, result['date'])

            result.update(updated_date_results[book_name][0])

        combined_and_sorted_results = sort_results(combined_and_sorted_results)
        time_projections_end_time = time.time()
        logger.debug(
            f"Time projections took: {time_projections_end_time - time_projections_start_time} seconds")

        # --- Dataframe and JSON creation ---
        dataframe_json_start_time = time.time()

        df = pd.DataFrame(combined_and_sorted_results)
        df.index = range(1, len(df) + 1)
        df.reset_index(inplace=True)
        df.rename(columns={'index': 'Result Number'}, inplace=True)

        search_config = {
            "rounds_combination": rounds_combination,  # No more 'step'
            "target_language": tlang,
            "strip_spaces": strip_spaces,
            "strip_in_braces": strip_in_braces,
            "strip_diacritics": strip_diacritics_chk,
            "include_torah": include_torah,
            "include_bible": include_bible,
            "include_quran": include_quran,
            "include_hindu": include_hindu,
            "include_tripitaka": include_tripitaka,
            "gematria_text": gematria_text,
            "start_date": start_date.strftime("%Y-%m-%d"),
            "end_date": end_date.strftime("%Y-%m-%d")
        }

        output_data = {
            "search_configuration": search_config,
            "results": combined_and_sorted_results
        }

        json_data = output_data
        combined_most_frequent = "\n".join(
            f"{book}: {phrase}" for book, phrase in most_frequent_phrases.items() if phrase)

        dataframe_json_end_time = time.time()
        logger.debug(
            f"Dataframe and JSON creation took: {dataframe_json_end_time - dataframe_json_start_time} seconds")

        overall_end_time = time.time()
        logger.debug(f"Overall process took: {overall_end_time - overall_start_time} seconds")

        return df, combined_most_frequent, json_data

    # --- Event Triggers ---
    round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
    round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)


    def update_rounds_combination(round_x, round_y):
        return f"{int(round_x)},{int(round_y)}"


    round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
    round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)


    translate_btn.click(
        perform_search,
        inputs=[rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah_chk, include_bible_chk, include_quran_chk, include_hindu_chk, include_tripitaka_chk, gematria_text, start_date_range, end_date_range, date_language_input],
        outputs=[markdown_output, most_frequent_phrase_output, json_output]
    )



if __name__ == "__main__":
    app.launch(share=False)